

BOLETIN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS

19 (1): 15 - 28 (2020) © / ISSN 0717 7917 / www.blacpma.ms-editions.cl

Artículo Original | Original Article

Chemical composition and acaricidal activity of essential oils and selected terpenes from two species of *Psidium* in the Cerrado biome of Brazil against *Tetranychus urticae*

[Composición química y actividad acaricida del aceite esencial y terpenos seleccionados de dos especies de *Psidium* de Cerrado Biome de Brasil contra *Tetranychus urticae*]

Claudio A.G. da Camara¹, Gesiane da S. Lima¹, Marcilio M. de Moraes¹, Milena M. C. da Silva¹, João P. R. de Melo², Maria L. dos Santos³ & Christopher W. Fagg⁴

¹Department of Chemistry, University Federal Rural of Pernambuco, Recife, PE, Brazil ²Department of Agronomy, University Federal Rural of Pernambuco, Recife, PE, Brazil ³Institute of Chemistry, University of Brasília, Brasília DF, Brazil ⁴Faculdad UnB Ceilandia, University of Brasília, Brasília DF, Brazil Contactos / Contacts: Claudio A.G. DA CAMARA - E-mail address: claudio_agc@hotmail.com

Abstract: The aim of this study was to investigate the chemical composition and acaricidal effect of two *Psidium* species essential oils and selected compounds on *Tetranychus urticae*. Essential oils from the leaves of *Psidium laruotteanum* and *Psidium myrsinites* were obtained through hydrodistillation, analyzed using CG-FID and CG-MS and evaluated for toxicity to *T. urticae* by fumigation and residual contact. The susceptibility of *T. urticae* to monoterpenes and sesquiterpenes was also investigated. The major constituents of the *P. laruotteanum* oil were (E)-nerolidol (9.6 ± 0.4%) and γ -terpinene (9.4 ± 0.6%) and the major constituents of the *P. myrsinites* oil were β -caryophyllene (21.2 ± 0.9%) and α -humulene (10.3 ± 0.5%). Based on the LC₅₀ estimates, no significant differences were found between the two oils regarding toxicity by fumigation or residual contact. β -Caryophyllene and (E)-nerolidol had the highest level of toxicity, independently of the method investigated. The findings indicate that both oils and selected constituents, especially β -caryophyllene and (E)-nerolidol, are promising as natural acaricidal agents that affect *T. urticae* through more than one mode of action.

Keywords: Essential oil; GC-MS; Sesquiterpenes; Psidium laruotteanum; Psidium myrsinites.

Resumen: Los aceites esenciales de las hojas de *Psidium laruotteanum* y *Psidium myrsinites* se obtuvieron por hidrodestilación, se analizaron por CG-FID y CG-MS, y se evaluaron sus toxicidades por fumigación y contacto residual contra *Tetranychus urticae*. Se investigó también la susceptibilidad del *T. urticae* a monoterpenos y sesquiterpenos. En el aceite esencial de *P. laruotteanum*, (E)-nerolidol (9.6 \pm 0.4%) y γ -terpinene (9.4 \pm 0.6%) se identificaron como constituyentes mayoritarios, mientras que en el aceite esencial de *P. myrsinites*, β -caryophyllene (21.2 \pm 0.9%) y α -humulene (10.3 \pm 0.5%) se encontraron como mayoritarios. Con base en las CL₅₀ estimadas, no se observaron diferencias significativas entre las toxicidades de los aceites por fumigación, y tampoco por contacto residual. β -Caryophyllene y (E)-nerolidol presentaron las mayores toxicidades, independientemente del método investigado. Estos resultados indican, que los dos aceites, así como los constituyentes seleccionados, entre los que se destacan β -caryophyllene y (E)-nerolidol, son promisores agentes acaricidas naturales por actuar en el *T. urticae* por más de un mecanismo de acción.

Palabras clave: Aceites esenciales; GC-MS; Sesquiterpenos; Psidium laruotteanum; Psidium myrsinites.

Recibido | Received: February 28, 2019

Aceptado | Accepted: April 17, 2019

Aceptado en versión corregida | Accepted in revised form: August 23, 2019

Publicado en línea | Published online: January 30, 2020

Este artículo puede ser citado como / This article must be cited as: CAG da Camara, GS Lima, M de Moraes, MMC da Silva, JPR de Melo, ML dos Santos, CW Fagg. 2020 Chemical composition and acaricidal activity of essential oils and selected terpenes from two species of *Psidium* in the Cerrado biome of Brazil against *Tetranychus urticae*. Bol Latinoam Caribe Plant Med Aromat 19 (1): 15 – 28. https://doi.org/10.37360/blacpma.20.19.1.2

INTRODUCTION

The Brazilian savanna, which is known as the *Cerrado*, is one of the richest biomes in the world, with about 12,000 species of native plants (Mendonça *et al.*, 2008). Covering approximately two million square kilometers and extending through ten states, including the Federal District, the *Cerrado* accounts for 22% of the area of Brazil and is the second largest biome in the country, behind only the Amazon forest (Ratter *et al.*, 1997). The plant biodiversity of this biome has stimulated research groups to search for bioactive compounds of economic value for phytotherapeutic products, the food industry and agricultural applications (Baenas *et al.*, 2019).

Among the genera most commonly found in the Cerrado, Psidium L. is represented by approximately 150 species and has wide distribution in all regions of Brazil (Souza et al., 2018; Machado et al., 2018). The fruits of species of this genus, which include guava, are used for the production of juices and jams (Frazon et al., 2009). Plants of the genus are also used in folk medicine in the form of teas as a diuretic and astringent as well as for the control of diabetes and obesity (Rodrigues & Carvalho, 2001). Psidium species are rich in phenolic compounds, with high antioxidant, antimicrobial, anti-inflammatory and anti-parasitic activity as well as insecticidal activity against larvae of the mosquito Aedes aegypti (Medina et al., 2011; Flores et al., 2013; Mendes et al., 2017; Machado et al., 2018). Among the species of Psidium with broad distribution in the Cerrado, P. laruotteanum and P. myrsinites are known locally as "aracá-cascudo" and "araçá-bravo", respectively. A previous investigation of the essential oil from P. myrsinites revealed a predominance of sesquiterpenes (Dias et al., 2015; Medeiros et al., 2015). Recently, Medeiros et al. (2018) showed that the essential oil from the leaves of *P. laruotteanum* is rich in monoterpenes.

The Cerrado has considerable plant biodiversity that has been explored little in terms of an alternative source of substances with acaricidal potential for the preparation of formulations for use in the integrated management of the Tetranychus urticae. In recent years, our research group has been investigating the acaricidal potential of aromatic flora from different biomes of Brazil with the aim of advantage of the considerable taking plant biodiversity for the preparation of formulations that can be used by small farmers for the integrated management of pests (Moraes et al., 2012; Nascimento et al., 2012). T. urticae is one of the main polyphagous agricultural pests throughout the world, with wide distribution in both hemispheres. This mite causes significant damage to tomato crops and ornamental plants grown in protected farming activities in different regions of Brazil (Vassiliou & Kitsis, 2013). The control of this pest consists mainly of the application of synthetic acaricides, such as Abamectin, but the indiscriminant use of this product has given rise to T. urticae populations that are resistant to its active ingredient (Dias et al., 2015). Recent studies have demonstrated that essential oils rich in monoterpenes and sesquiterpenes are promising for the management of T. urticae in green houses (Born et al., 2018) through both mechanisms of toxicity to the mite and by affecting feeding and egg-laving preferences (Moraes et al., 2017).

Giving continuity to the chemical study of aromatic plants in Brazil, the aim of the present study was to determine the chemical composition of the essential oils from the leaves of *P. laruotteanum* and *P. myrsinites* occurring in the *Cerrado* biome of central Brazil and evaluate the toxicity of these oils to *T. urticae*. The acaricidal properties of selected terpenes in the essential oils were also investigated with the aim of contributing to the formulation of an emulsionable acaricide. The results were compared to Azamax[®] and eugenol used as positive controls.

MATERIALS AND METHODS Collection of plant material

Leaves of *Psidium laruotteaanum* Cambess and *Psidium myrsinites* DC. were collected from three adult plants of each species during the flowering period in the campus of University of Brasília campus, Brasília, Federal District, Brazil in a cerrado *sensu strito* vegetation. The plant was identified by the botanist Dr. Carolyn Proença from the departament of Botany at UnB. The voucher speciem was deposited at the UnB herbarium under code of J.E.Q. Faria Jn. & Fagg C.W. 932 and 933 with a duplicate sent to HUEG (Herbarium of the Universidade Estadual de Goiás, Goiás State University).

Chemicals

All monoterpenes (α -pinene, β -pinene, limonene, pcymene, 1,8-cineole, α -terpineol and γ -terpinene), sesquiterpenes (β -caryophyllene, aromadendrene, α -

da Camara et al.

humulene, caryophyllene oxide, valencene and (*E*)nerolidol) used in the identifications of volatile components and eugenol used as the positive control (fumigation) were purchased from Sigma-Aldrich -Brazil. Azamax[®] (12 g azadirachtin /L EC E.I.D. Parry) was acquired from the local market and used as positive control (residual contact).

Essential oils extraction and GC-FID analysis

The essential oils from fresh leaves (100 g) were separately isolated using a modified Clevenger-type apparatus and hydrodistillation for 2h. The oil layers were separated and dried over anhydrous sodium sulfate, stored in hermetically sealed glass containers, and kept at low temperature (-5°C) until analysis. Total oil yields were expressed as percentages (g/100 g of fresh plant material). All experiments were carried out in triplicate. Quantitative GC analysis were carried out using a PerkinElmer Clarus 500 GC apparatus equipped with a flame ionization detector (FID) and a non-polar DB-5 fused silica capillary column (30 m x 0.25 mm x 0.25 µm) (J & W Scientific). The oven temperature was programmed from 60 to 240°C at a rate 3°C min⁻¹. Injector and detector temperatures were 260°C. Hydrogen was used as the carrier gas at a flow rate of 1 mL min⁻¹ in split mode (1:30). The injection volume was 1.0 µL of diluted solution (1/100) of oil in n-hexane. The amount of each compound was calculated from GC-FID peak areas in the order of DB-5 column elution and expressed as a relative percentage of the total area of the chromatograms. Analyses were carried out in triplicate.

GC-MS analysis

The qualitative Gas Chromatography-Mass Spectrometry (GC-MS) analysis were carried out using a Varian 220-MS IT GC system with a mass selective detector, mass spectrometer in EI 70 eV with a scan interval of 0.5 s and fragments from 40 to 550 Da. fitted with the same column and temperature program as that for the GC-FID experiments, with the following parameters: carrier gas = helium; flow rate = 1 mL min⁻¹; split mode (1:30); injected volume = 1 μ L of diluted solution (1/100) of oil in *n*-hexane.

Identification of components

Identification of the components was based on GC-MS retention indices with reference to a homologous series of C8-C40 n-alkanes calculated using the Van der Dool and Kratz equation (Dool & Kratz, 1963) and by computer matching against the mass spectral library of the GC-MS data system (NIST 11 and WILEY 11th) and co-injection with authentic standards as well as other published mass spectra (Adams, 2007). Area percentages were obtained from the GC-FID response without the use of an internal standard or correction factors.

Acaricidal assay

Specimens of **Tetranychus** urticae (Acari: Tetranychidae) was originally collected from grapevines (Vitis vinifera L.) in the municipality of Petrolina-PE (09°12'43.9" S; 40° 29'12.7" W) and maintained at the Laboratory for the Chemical Investigation of Natural Insecticides, Department of Agronomy of the Federal Rural University of Pernambuco. The mite T. urticae used for the bioassay was reared in plants of Canavalia ensiformes at temperature of 25±5°C, relative humidity of 65±5% and a 12 h photophase, without any exposure to acaricides.

Fumigation and Residual Contact Bioassays of Oils and Selected Compounds

The fumigation and residual contact methods were the same as those employed by Araújo et al. (2012). Hermetically sealed glass recipients with a capacity of 1.0 L were used as test chambers. A fine brush was used to transfer female T. urticae onto the leaf disks (2.5 cm in diameter). In order to maintain the turgor of the disks and avoid the escape of mites, the leaf disks were placed onto filter paper disks saturated with water in Petri dishes (9 cm). The experiment was performed in triplicate and repeated three times. One replicate consisted of 30 specimens placed on three leaf disks (10 mites per disk) in a Petri dish. The oils, constituents and positive control (eugenol) were applied with a pipette on a piece of filter paper (5 x 2 cm) attached to the underside of the lid of the recipient. In the fumigation bioassays, the concentrations ranged from 0.1 to 2.5 µL L⁻¹ of air for the oils and 3.2 x 10^{-4} to 26 μ L L⁻¹ of air for the positive selected compounds and control. Immediatelv after the application of the oil/compound, the fumigation chamber was closed and covered with PVC plastic wrap. Mortality was determined 24 hours after treatment. Mites with no sign of movement were considered dead.

In the residual contact bioassays, tests were

conducted in Petri dishes (10 cm diameter) and solutions were prepared by diluting essential oil in methanol. A 20 μ L aliquot of each concentration was painted on the underside of the disc with a micropipette. After drying at room temperature for 2 min, each disc was individually placed at the bottom of a Petri dish lid on a 10 cm diameter disc of filter paper wetted with distilled water. Ten adult female mites were introduced into each Petri dish. All treatments were replicated tree times. Concentrations ranged from 5.0 to 40.0 μ L mL⁻¹ for the oils and 0.1 to 675.0 μ L mL⁻¹ for the selected compounds and positive control. Mortality was determined 24 hours after treatment. Mites with no sign of movement were considered dead. Control mites were held on leaf discs painted with the carrier solvent alone.

Statistical analysis

To estimate the curve slopes, LC_{50} (lethal concentration) of each *Psidium* oils, selected constituents and positive controls, mortality data were submitted to PROBIT analysis using POLO PC (LeOra, 1987). The concentrations used were calculated based on the logarithmic series and toxicity ratios based on the method described by Robertson *et al.* (2017).

Table No. 1
Percentage composition and yield of essential oils from P. laruotteanum and P. myrsinites

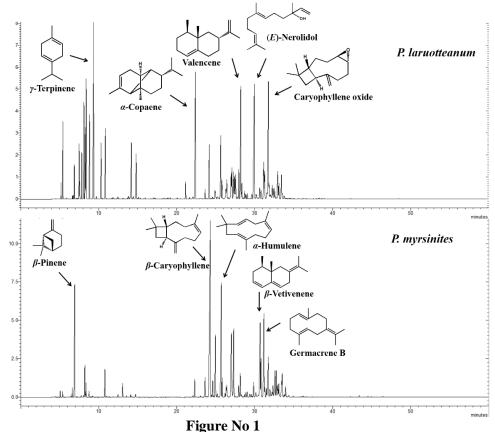
Compounds	— RIª	RI ^b -	P. laruotteanum	P. myrsinites	Method of	
Yield (%) ± DP	— KI"	KI° -	0.4±0.0	0.4±0.1	identification	
Santolin triene	907	906	-	0.2±0.0	RI, MS	
Artemisia triene	918	923	0.5±0.2	-	RI, MS	
α-Pinene	928	932	1.8±0.1	-	RI, MS, CI	
Sabinene	964	969	-	0.4±0.0	RI, MS	
β -Pinene	974	974	1.0±0.0	6.4±0.3	RI, MS, CI	
α-Phellandrene	998	1002	1.3±0.0	-	RI, MS	
p-Mentha-1(7),8-diene	999	1003	0.5±0.0	-	RI, MS	
iso-Sylvestrene	1006	1007	1.1±0.2	-	RI, MS	
<i>p</i> -Cymene	1017	1020	2.8±0.2	-	RI, MS	
Limonene	1021	1024	2.8±0.0	1.5±0.1	RI, MS, CI	
β -Phellandrene	1022	1025	-	0.5±0.0	RI, MS	
1,8-Cineole	1024	1026	3.2±0.2	-	RI, MS, CI	
(Z)- β -Ocimene	1034	1032	2.8±0.1	-	RI, MS	
γ-Terpinene	1050	1054	9.4±0.6	-	RI, MS, CI	
Terpinolene	1082	1086	2.1±0.1	1.7±0.2	RI, MS, CI	
Linalool	1091	1095	3.1±0.1	-	RI, MS, CI	
Neoiso-3-thujanol	1144	1147	-	0.7 ± 0.0	RI, MS	
Terpinen-4-ol	1169	1174	2.3±0.1	-	RI, MS, CI	
a-Terpineol	1184	1186	2.1±0.1	-	RI, MS, CI	
Cubebene	1350	1345	-	1.0 ± 0.1	RI, MS	
α-Copaene	1372	1374	6.6±0.1	-	RI, MS, CI	
β -Patchoulene	1383	1379	-	1.3±0.1	RI, MS	
β -Caryophyllene	1414	1417	3.4±0.1	21.2±0.9	RI, MS, CI	
β-Copaene	1425	1430	-	0.9±0.0	RI, MS	
β -Gurjunene	1426	1431	-	4.1±0.1	RI, MS	

da Camara et al.

y-Elemene	1432	1434	3.2±0.1	-	RI, MS
α -Guaiene	1436	1437	0.9±0.1	-	RI, MS
Aromadendrene	1437	1439	-	1.1±0.1	RI, MS, CI
α-Humulene	1448	1452	-	10.3±0.5	RI, MS, CI
<i>α-neo</i> -Clovene	1450	1452	0.6±0.1	0.5±0.1	RI, MS
allo-Aromadendrene	1453	1458	-	0.8±0.0	RI, MS
cis-Cadina-1(6),4-diene	1464	1461	1.0 ± 0.0	-	RI, MS
Dehydro-aromadendrene	1465	1460	-	6.5±0.1	RI, MS
9-epi-(E)-Caryophyllene	1466	1464	1.2±0.1	-	RI, MS
β -Chamigrene	1471	1476	1.1±0.1	5.1±0.2	RI, MS
γ- Muurolene	1473	1478	1.0 ± 0.0	-	RI, MS
Amorfa-4,7(11)-diene	1477	1479	1.4 ± 0.0	-	RI, MS
Germacrene D	1486	1484	-	0.7±0.0	RI, MS
<i>cis-β</i> -Guaiene	1487	1492	1.5±0.1	1.4±0.1	RI, MS
Valencene	1493	1496	5.7±0.5	-	RI, MS, CI
Epizonarene	1496	1501	0.8 ± 0.0	-	RI, MS
10-epi-Cubebol	1533	1533	-	1.0±0.0	RI, MS
β -Vetivenene	1554	1554	-	6.6±0.2	RI, MS
Germacrene B	1557	1559	-	7.9±0.3	RI, MS
(E)-Nerolidol	1558	1561	9.6±0.4	2.3±0.1	RI, MS, CI
Longicanfenilono	1566	1561	-	0.9±0.1	RI, MS
Maaliol	1565	1566	1.5 ± 0.0	-	RI, MS
Himachalene epoxide	1574	1578	1.0 ± 0.0	-	RI, MS
Caryophyllene oxide	1580	1582	7.3±0.1	3.4±0.1	RI, MS, CI
Longiborneol	1597	1599	-	1.5±0.2	RI, MS
Rosifoliol	1601	1600	0.5 ± 0.0	-	RI, MS
Rosifoliol	1603	1600	-	0.7 ± 0.0	RI, MS
Ledol	1607	1602	0.7 ± 0.0	-	RI, MS
Isolongifolan-7-α-ol	1615	1618	1.5 ± 0.1	-	RI, MS
epi-Cedrol	1614	1618	0.7 ± 0.1	-	RI, MS
10- <i>epi-γ</i> -Eudesmol	1622	1622	1.7 ± 0.0	1.5±0.0	RI, MS
trans-Isolongifolane	1626	1625	-	0.5 ± 0.0	RI, MS
γ-Eudesmol	1629	1630	-	0.6 ± 0.0	RI, MS
<i>epi-α</i> -Cadinol	1633	1638	-	0.7 ± 0.0	RI, MS
α -Muurolol	1639	1644	4.6±0.0	1.1±0.0	RI, MS
Cubenol	1647	1645	-	1.3±0.0	RI, MS
Pogostol	1647	1651	-	1.5±0.0	RI, MS
α -Cadinol	1649	1652	2.6±0.0	-	RI, MS
α -Eudesmol	1650	1652	0.6 ± 0.0	-	RI, MS
Eudesmol acetate	1675	1680	0.9 ± 0.0	-	RI, MS
Amorfa-4,9-dien-2-ol	1703	1700	0.1±0.0	-	RI, MS

$\mathbf{RI}^{a} =$	Sclareolide	2060	2065	0.1±0.0	-	RI, MS
	Monoterpenes			36.6±0.3	11.4 ± 0.2	
	Sesquiterpenes			61.8±0.6	86.4 ± 0.8	
	Total			98.6±0.5	97.8±0.7	

Retention indices calculated from retention times in relation to those of a series $C_{8}-C_{40}$ of n-alkanes on a 30m DB-5 capillary column. RI^{b} = Retention indices from the literature. RI = retention index; MS = mass spectroscopy; CI: Co-injection with authentic compounds.


RESULTS AND DISCUSSION

The yields and compounds identified in the essential oils from the leaves of *P. laruotteanum* and *P. myrsinites* are listed in Table No. 1.

The oil yields were $0.4\pm0.0\%$ for the *P. laruotteanum* oil and $0.4\pm0.1\%$ for the *P. myrsinites* oil. These findings are in agreement with yields reported in the literature for other species of *Psidium* (Adam *et al.*, 2011; Chalannavar *et al.*, 2014; Khadhri *et al.*, 2014).

The chemical analysis by GC-MS revealed a total of 68 compounds (Figure No. 1), corresponding

to $98.6\pm0.5\%$ and $97.8\pm0.7\%$ of the chemical composition of the *P. laruotteanum* and *P. myrsinites* oils, respectively. The oils exhibited a terpene chemical profile (monoterpenes and sesquiterpenes, with a predominance of the latter). This profile is in agreement with data reported for the oils of other species of the genus *Psidium* that occur in different regions of Brazil and the world (Freitas *et al.*, 2002; Pino *et al.*, 2004; Chen *et al.*, 2006; Sartorelli & Correa, 2007; Adam *et al.*, 2011; Khadhri *et al.*, 2014; Medeiros *et al.*, 2015; Dias *et al.*, 2015).

GC-MS chromatogram of *Psidium laruotteanum and Psidium myrsinites* leaf oil and molecular structures of main constituents.

Forty-one compounds were identified in the essential oil from P. laruotteanum. Sesquiterpenes accounted for the largest proportion (61.8±0.6%), with (E)-nerolidol (9.6 \pm 0.4%) and γ -terpinene as the major constituents. Other $(9.4\pm0.6\%)$ constituents were also found in significant percentages. such as α -copaene (7.6±0.1%). caryophyllene oxide $(7.3\pm0.1\%),$ valencene $(5.7\pm0.5\%)$ and α -muurolol $(4.6\pm0.0\%)$. Medeiros et al. (2018) recently reported a chemical profile rich in monoterpenes (89.3 to 92.5%) for three populations of P. laruotteanum collected in the Cerrado, describing p-cymene (19.4 to 34.8%), 1,8-cineole (6.9 to 19.2%) and α -pinene (9.2 to 11.4%) as the major constituents of the essential oils. These compounds were also identified in the present study, but in smaller percentages [p-cymene (2.8±0.2%), 1,8-cineole $(3.2\pm0.2\%)$ and α -pinene $(1.8\pm0.1\%)$]. While (*E*)-nerolidol was not found in the populations of *P. laruotteanum* investigated by Medeiros *et al.* (2018), this sesquiterpene has been reported in significant percentages in other congeners that occur in Brazil, such as *P. guajava* collected in the states of Minas Gerais (8.19%) (Lima *et al.*, 2008) and Espírito Santo (13.7%) (Souza *et al.*, 2017). γ -Terpinene was a major constituent in the essential oils described by Medeiros *et al.* (2018) and in the present investigation, but has been found at proportions lower than 1% in the essential oils from other species of *Psidium* (Chen *et al.*, 2006; Pino *et al.*, 2006; Chen *et al.*, 2008; Biegelmeyer *et al.*, 2011Adam *et al.*, 2011; El-Ahmady *et al.*, 2013).

Table No. 2
Fumigation toxicity (LC ₅₀ at μ L L ⁻¹ of air) and residual contact (LC ₅₀ at μ L mL ⁻¹) of the essential oil of <i>P</i> .
laurotteanum and P mursinites

auroueanum and F. myrsinues.								
Oil	Bioassay	n	df	slope	LC ₅₀ (CI 95%)	P-values	χ2	RT ₅₀ (CI 95%)
	Fumigation	450	4	1.72 (1.59 - 1.85)	0.91 (0.54 - 1.44)	0.08	6.89	258.04 (163.03 - 408.40)
P. laruotteanum	Contact	540	4	1.36 (1.27 - 1.45)	21.25 (14.88 - 32.76)	0.06	8.99	70.75 (51.79 - 91.28)
D	Fumigation	450	4	1.40 (1.28 - 1.52)	0.82 (0.30 - 1.51)	0.06	6.26	231.80 (137.45 - 390.91)
P. myrsinites	Contact	630	5	1.12 (1.05 - 1.19)	16.06 (10.65 - 22.65)	0.05	10.82	51.97 (39.18 - 68.95)
Eugenol	Fumigation	580	5	0.84 (0.72 - 0.97)	0.004 (0.002 - 0.008)	0.68	2.50	-
Azamax®	Contact	630	5	2.46 (2.26 - 2.65)	0.31 (0.26 - 0.37)	0.13	8.30	-

Eugenol and Azamax[®] used as positive control. n = number of mites/dose; df= degrees of freedom; CI = Confidence interval. χ2= chi-squared. TR = toxicity ratio.

Thirty-five compounds were identified in the essential oil from P. myrsinites, accounting for of the oil. A predominance of 97.8±0.7% sesquiterpenes was found (86.4 \pm 0.8%), with β caryophyllene as the major constituent $(21.2\pm0.9\%)$. Other compounds were also found in significant percentages, such as α -humulene (10.3±0.5%), germacrene В $(7.9\pm0.3\%),$ (E)- β -vetivenene $(6.6\pm0.2\%)$, dehydro-aromadendrene $(6.5\pm0.1\%)$ and β -pinene (6.4±0.3%). These results are in agreement with data described for the leaf oil from P. myrsinites collected in the state of Maranhão, Brazil, in which β -

caryophyllene (26.5%) and α -humulene (23.92%) were the main constituents (Dias et al., 2015). Castelo et al. (2012) also report β -caryophyllene, α humulene, β -guaiane and caryophyllene oxide as the major constituents of the leaf oil from *P. myrsinites* collected in Brasília, Brazil. On the other hand, a study on the shoots of P. myrsinites found caryophyllene oxide (26.1%) to be the major constituent (Medeiros et al., 2015). β -Caryophyllene as the major constituent has been reported for several species of the genus Psidium, such as P. guajava (18.3)to 58.28%) (Chen et al.. 2006; Chen *et al.*, 2008; Adam *et al.*, 2011; El-Ahmady *et al.*, 2013; Souza *et al.*, 2017; Wang *et al.*, 2017), *P. cattleyanum* (22.5 to 31.5%) (Biegelmeyer *et al.*, 2011; Adam *et al.*, 2011), *P. cattlenium* (59.0%) (Chen *et al.*, 2006) and *P. myrsinoides* (22.4%) (Freitas *et al.*, 2002).

The results of the fumigation and residual contact bioassays investigating the effect of the *P*. *laurotteanum* and *P. myrsinites* oils on *T. urticae* are displayed in Table No. 2. The concentration-response curves obtained in the bioassays for *T. urticae* mortality were adjusted to the Probit model (non-significant values of χ^2 and p>0.05).Both oils were toxic to the mite independently of the method

employed. No significant differences between the oils were found with regard to toxicity by fumigation or residual contact. The oils were more toxic to the mite through fumigation than residual contact, suggesting the greater toxicity of the vapors through the respiratory pathway of the mite than through ingestion or contact with the tarsi (Lorini *et al.*, 2015; Enan, 2001). Similar results have been reported for other oils, such as those from *Eugenia langsdorffii* (Moraes *et al.*, 2012) and *Vitex agnus-castus* (Neves & da Camara, 2016). Neither oil was more active than eugenol and Azamax[®] by fumigation and residual contact, respectively.

Table No. 3A

Toxicity by fumigation (LC₅₀ at μ L L⁻¹ of air) and residual contact (LC₅₀ at μ L mL⁻¹) of majority of the individual compounds selected from oils *P. laurotteanum* and *P. myrsinites* oils against *Tetranychus urticae*.

Compound	% in t	% in the oil		n	df	Slope
	1	2				
α-Pinene	1.8±0.1		Fumigation	722	5	3.91 (3.53-4.29)
a-rmene	1.8±0.1	-	Contact	150	4	2.16 (1.86-2.45)
β -Pinene	1.0±0.0	6.4±0.3	Fumigation	630	4	2.95 (2.69-3.20)
<i>p</i>	110_010	0112010	Contact	150	4	2.73 (2.39-3.07)
<i>p</i> -Cymene	2.8±0.2		Fumigation	630	5	2.11 (1.97-2.25)
<i>p</i> -Cymene	2.8±0.2	-	Contact	200	6	2.69 (2.36-3.02)
I income	2.8±0.0	15.01	Fumigation	444	3	7.35 (6.46-8.23)
Limonene	2.8±0.0	1.5±0.1	Contact	124	3	3.48 (2.91-4.04)
	2.2.0.2	-	Fumigation	630	4	8.16 (7.62-8.22)
1,8-Cineole	3.2±0.2		Contact	150	4	2.61 (2.21-3.01)
a Torrinono	9.4±0.6		Fumigation	540	4	10.03 (8.87-11.19)
y-Terpinene	9.4±0.0	-	Contact	540	4	1.75 (1.49-1.99)
α-Terpineol	2.1±0.1		Fumigation	633	4	6.08 (5.20-6.96)
a-reipineoi	2.1±0.1	-	Contact	123	3	1.70 (1.46-1.94)
β -Caryophyllene	3.4±0.1	21.2±0.9	Fumigation	720	6	0.80 (0.33-1.27)
p-Caryophynene	J.4±0.1	21.2±0.9	Contact	175	5	2.25 (1.97-2.52)
Aromadendrene	-	1.1±0.1	Fumigation	540	4	2.14 (1.98-2.30)

Chemical composition and acaricidal activity of Psidium essential oils

			Contact	175	5	8.00 (6.17-9.83)
<i>a</i> -Humulene		10.3±0.5	Fumigation	629	5	1.85 (1.74-1.96)
a-Humulene	-		Contact	200	6	2.45 (2.12-2.77)
Valencene	5.7+0.5	-	Fumigation	540	4	0.84 (2.64-3.04)
	J.7±0.5		Contact	540	4	1.55 (1.41-1.69)
(E)-Nerolidol	9.6+0.4	2.3+0.1	Fumigation	450	3	8.21 (7.34-9.08)
	9.0±0.4	2.3±0.1	Contact	540	4	1.28 (1.19-1.37)
	7.3+0.1	3.4±0.1	Fumigation	720	6	1.37 (1.29-1.45)
Caryophyllene oxide	/.3±0.1		Contact	630	5	1.97 (1.77-2.17)

Table No. 3B

Toxicity by fumigation (LC₅₀ at μ L L⁻¹ of air) and residual contact (LC₅₀ at μ L mL⁻¹) of majority of the individual compounds selected from oils *P. laurotteanum* and *P. myrsinites* oils against *Tetranychus urticae*.

Compound	p-values	X²	Bioassay	TR50(CI 95%)
a-Pinene	0.06	11.04	Fumigation	276.25 (183.07 - 350.01)
	0.60	2.73	Contact	56.95 (36.81-76.17)
β -Pinene	0.06	9.16	Fumigation	111.82 (74.51-182.61)
	0.54	8.10	Contact	69.40 (43.96-82.98)
<i>p</i> -Cymene	0.08	9.83	Fumigation	103.32 (60.53-151.35)
	0.37	6.48	Contact	63.32 (41.85-78.49)
Limonene	0.05	7.60	Fumigation	220.15 (136.06 - 250.91)
	0.68	1.52	Contact	129.36 (87.43-162.94)
1,8-Cineole	0.11	7.76	Fumigation	97.10 (60.06-156.99)
	0.58	1.97	Contact	144.86 (9.31-2254.06)
γ-Terpinene	0.06	7.66	Fumigation	123.78 (82.00-186.20)
	0.05	9.29	Contact	129.74 (86.74-185.72)
α -Terpineol	0.05	7.81	Fumigation	52.98 (19.77 - 111.12)
	0.40	2.94	Contact	78.72 (40.04-98.23)
β -Caryophyllene	0.17	9.12	Fumigation	-
	0.98	0.72	Contact	-

da Camara et al.

Aromadendrene	0.05	9.28	Fumigation	160.11 (94.00 - 295.29)
	0.09	3.43	Contact	49.94 (34.85-60.57)
α-Humulene	0.14	8.41	Fumigation	55.03 (24.74 - 98.71)
	0.83	2.85	Contact	37.19 (26.98-51.26)
Valencene	0.39	4.08	Fumigation	107.94 (74.11-180.81)
	0.05	9.29	Contact	99.74(66.74-135.72)
(E)-Nerolidol	0.91	2.88	Fumigation	9.96 (4.44-22.59)
	0.98	0.38	Contact	5.91 (2.44-10.59)
Caryophyllene oxide	0.10	10.5	Fumigation	136.89 (89.09-212.22)
	0.09	8.02	Contact	198.04 (123.62-258.21)

n = number of mites/dose; df= degrees of freedom; CI = confidence interval; χ 2= chi-squared; TR = toxicity ratio.

This is the first report of the acaridical action of the essential oils from P. laurotteanum and P. myrsinites against T. urticae. However, the effects of fumigation and residual contact have been investigated in the essential oil of the congener P. cattleianum with regard to its effects on the dust Dermatophagoides mites farinae and D. pteronyssinus, which cause allergic reactions, asthma, conjunctivitis and allergic rhinitis (Oh et al., 2014). The fumigant and residual contact results of the P. laruotteanum and P. myrsinites oils showed more toxicity than essential oil from Aristolochia trilobata (de Melo et al., 2018) and Schinus terebinthifolius (Nascimento et al., 2012). However, similar results were in agreement with data reported for essential oils from the leaves of Croton jacobinensis, stems and leaves of C. muscicapa by fumigation (Neves & da Camara, 2011) and leaves of C. rhamnifolioides by residual contact (da Camara et al., 2017).

The results of the fumigation and residual contact bioassays investigating the effects of selected compounds from the *P. laurotteanum* and *P. myrsinites* oils are displayed in Table No. 3a and 3b.

As observed for the oils, the compounds exhibited greater toxicity to the mites by penetration of the vapors through the airways (fumigation) than by residual contact. Among the constituents tested, β caryophyllene and (E)-nerolidol exhibited the greatest toxicity, independently of the method employed. Based on the estimated LC_{50} values of the selected compounds, the order of toxicity by fumigation was β -caryophyllene > (*E*)-nerolidol > α humulene = α -terpineol = p-cymene = valencene = γ terpinene = β -pinene = caryophyllene oxide = 1,8cineole > aromadendrene = limonene = α -pinene and the order by residual contact was β -caryophyllene > (E)-nerolidol > α -humulene > p-cymene = aromadendrene = α -pinene = α -terpineol = β -pinene > valencene = γ -terpinene = limonene = 1,8-cineole = caryophyllene oxide. None of the selected compounds was more toxic than eugenol and Azamax[®] used as the positive control in the fumigation and residual contact bioassays, respectively.

In the comparison of relative toxicity by fumigation among the essential oils and constituents, β -caryophyllene was 16-fold and 18-fold more toxic than the oils from *P. myrsinites* and *P. laruotteanum*, respectively, and (*E*)-nerolidol exhibited the same level of toxicity as the oils. In the comparison of relative toxicity by residual contact, β -caryophyllene was 25-fold and 33-fold more toxic than the oils from

P. myrsinites and P. laruotteanum, respectively, and (E)-nerolidol was 10-fold to eight-fold more toxic than the P. myrsinites and P. laruotteanum oils, These results suggest that β respectively. caryophyllene and (E)-nerolidol play an important role in the acaricidal activity of the Psidium oils investigated in this study. However, previous investigations on the roles exercised by terpenes in terms of fumigant action and residual contact of essential oils show that the toxicity of an oil cannot only be attributed to the individual toxicity of its constituents; the proportions and possible interactions between the compounds that make up the essential oil should also be taken into consideration (Moraes et al., 2012: Neves & da Camara, 2016: Moraes et al., 2017).

CONCLUSION

The chemical analysis by GC-MS enabled the identification of a novel chemotype rich in (*E*)-nerolidol (9.6±0.4%) and γ -terpinene (9.4±0.6%) for *P. laruotteanum* in the *Cerrado* biome of central Brazil. This study also confirms the occurrence of a chemotype rich in β -caryphyllene for *P. myrsinites*

occurring in the same biome.

The present findings indicate that the essential oils from the leaves of *P. laruotteanum* and *P. myrsinites* and selected constituents, especially β -caryophyllene and (*E*)-nerolidol, are promising natural acaricidal agents with more than one mode of action (fumigation and residual contact). However, further studies are needed to investigate the effect of these oils and constituents on non-target organisms and establish the cost-benefit ratio for the formulation of an acaricide for use in the management of *T. urticae* in organic and protected farming activities.

ACKNOWLEDGMENTS

This work was supported by the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco [FACEPE # APQ-1008-1.06/15; APQ-0476-1.06/14; APQ-08601.06/16; IBPG-0344-1.06/17], Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq # 302860/2016-9] and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for [CAPES # IBPG-0984-5.01/10, FACEPE # IBPG-0984-5.01/10] for awarding a Grant.

REFERENCES

- Adam F, Vahirua-Lechat I, Deslandes E, Menut C. 2011. Aromatic plants of French Polynesia. V. chemical composition of essential oils of leaves of *Psidium guajava* L. and Psidium cattleyanum Sabine. J Essent Oil Res 23: 98 101. https://doi.org/10.1080/10412905.2011.9700433
- Adams RP. 2007. Identification of essential oil components by gas chromatography/qua-drupole mass spectroscopy, Allured Publ. Corp, Carol Stream, Illinois, USA.
- Araújo MJC, da Camara CAG, Born FS, Moraes MM, Badji CA. 2012. Acaricidal activity and repellency of essential oil from *Piper aduncum* and its components against *Tetranychus urticae*. Exp Appl Acarol 57: 139 - 155. https://doi.org/10.1007/s10493-012-9545-x
- Baenas N, Belovic M, Ilic N, Moreno DA, García-Viguera C. 2019. Industrial use of pepper (*Capsicum annum* L.) derived products: Technological benefits and biological advantages. Food Chem 274: 872 885. https://doi.org/10.1016/j.foodchem.2018.09.047
- Biegelmeyer R, Andrade JMM, Aboy AL, Apel MA, Dresch RR, Marin R, Raseira MCB, Henriques AT. 2011. Comparative analysis of the chemical composition and antioxidant activity of red (*Psidium cattleianum*) and yellow (*Psidium cattleianum* var. lucidum) strawberry guava fruit. **J Food Sci** 76: 991 - 996. https://doi.org/10.1111/j.1750-3841.2011.02319.x
- Born FS, da Camara CAG, Melo JPR, Moraes MM. 2018. Acaricidal property of the essential oil from *Lippia* gracilis against *Tetranychus urticae* and a natural enemy, *Neoseiulus californicus*, under greenhouse conditions. **Exp Appl Acarol** 75: 491 502. https://doi.org/10.1007/s10493-018-0286-3
- Castelo AVM, Del Menezi CHS, Resck IS. 2012. Seasonal variation in the yield and the chemical composition of essential oils from two Brazilian native arbustive species. J Appl Sci 12: 753 760. https://doi.org/10.3923/jas.2012.753.760
- Chalannavar RK, Venugopala KN, Baijnath H, Odhav B. 2014. The Chemical composition of leaf essential oils of *Psidium guajava* L. (White and Pink fruit forms) from South Africa. **J Essent Oil Bear Pl** 17: 1293 1302. https://doi.org/10.1080/0972060x.2014.892840

- Chen J, Lichwa J, Ray C. 2006. Essential oils of selected hawaiian plants and associated litters. J Essent Oil Res 19: 276 278. https://doi.org/10.1080/10412905.2007.9699279
- Chen HC, Sheu MJ, Lin LY, Wu CM. 2008. Volatile constituents of six cultivars of mature guava (*Psidium guajava* L.) fruits from Taiwan. Acta Hort 765: 273 277. https://doi.org/10.17660/actahortic.2008.765.34
- da Camara CAG, de Moraes MM, de Melo JP, da Silva MM. 2017. Chemical composition and acaricidal activity of essential oils from *Croton rhamnifolioides* Pax and Hoffm. in different regions of a Caatinga biome in Northeastern Brazil. J Essent Oil Bear Pl 20: 1434 - 1449. https://doi.org/10.1080/0972060x.2017.1416677
- de Melo JPR, da Camara CAG, da Silva GL, de Moraes MM, Alves PB. 2018. Acaricidal properties of the essential oil from *Aristolochia trilobata* and its major constituents against the two-spotted spider mite (*Tetranychus urticae*). Can J Plant Sci 98: 1342 1348. https://doi.org/10.1139/cjps-2018-0163
- Dias CN, Alves LPL, Rodrigues KAF, Brito MCA, Rosa CS, do Amaral FMM, Monteiro OS, Andrade EHA, Maia JGS, Moraes DFC. 2015. Chemical composition and larvicidal activity of essential oils extracted from Brazilian legal Amazon plants against *Aedes aegypti* L. (Diptera: Culicidae). Evid Based Complement Alternat Med 2015: Article ID 490765, 8 pages. https://doi.org/10.1155/2015/490765
- Dool HD, Kratz PD. 1963. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11: 463 471. https://doi.org/10.1016/s0021-9673(01)80947-x
- El-Ahmady SH, Ashour ML, Wink M. 2013. Chemical composition and anti-inflammatory activity of the essential oils of *Psidium guajava* fruits and leaves. J Essent Oil Res 25: 475 - 481. https://doi.org/10.1080/10412905.2013.796498
- Enan E. 2001. Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol Part C 130: 325 337. https://doi.org/10.1016/s1532-0456(01)00255-1
- Flores G, Dastmalchi K, Wu S, Whalen K, Dabo AJ, Reynertson KA, Foronjy RF, D'Armiento JM, Kennelly EJ. 2013. Phenolic-rich extracts from the Costa Rican guava (*Psidium friedchsthalianum*) pulp with antioxidant and anti-inflammatory activity. Potential for COPD therapy. Food Chem 141: 899 - 895. https://doi.org/10.1016/j.foodchem.2013.03.025
- Frazon RC, Campos LZDO, Proença CEB, Sousa-silva JC. 2009. Araçás do gênero *Psidium*: principais espécies, ocorrência, descrição e usos. Embrapa Cerrados, Planaltina, Brazil.
- Freitas MO, Morais SM, Silveira, E R. 2002. Volatile constituents of *Psidium myrsinoides* O. Berg. J Essent Oil Res 14: 364 365. https://doi.org/10.1080/10412905.2002.9699885
- Khadhri A, El Moknib R, Almeida C, Nogueira JMF, Araújo MEM. 2014. Chemical composition of essential oil of *Psidium guajava* L. growing in Tunisia. Ind Crops Prod 52: 29 - 31. https://doi.org/10.1016/j.indcrop.2013.10.018
- LeOra Software POLO-PC: a user's guide to Probit Logit analysis. 1987. Berkely, USA.
- Lima RK, Cardoso MG, Andrade MA, Nascimento EA, Morais SAL, Nelson DL. 2008. Composition of the essential oil from the leaves of tree domestic varieties and one wild variety of the guava plant (*Psidium guajava* L., Myrtaceae). Rev Bras Farmacogn 20: 41 44. https://doi.org/10.1590/s0102-695x2010000100009
- Lorini, I, Krzyzanowski, FC, França-Neto JB, Henning AA, Henning FA. 2015. Manejo integrado de pragas de grãos e sementes armazenadas. Embrapa Soja, Brasília, Distrito Federal, Brasil.
- Machado AJT, Santos ATL, Martins GMAB, Cruz RP, Costa MS, Campina FF, Freitas MA, Bezerra CF, Leal ALAB, Carneiro JNP, Coronel C, Rolón M, Gómez CV, Coutinho HDM, Morais-Braga MFB. 2018. Antiparasitic effect of the *Psidium guajava* L. (guava) and *Psidium brownianum* Mart. EX DC. (araçá-de-veado) extracts. Food Chem Toxicol 119: 275 - 280. https://doi.org/10.1016/j.fct.2018.03.018
- Medeiros FCM, Menezzi CHS, Bizzo HR, Vieira RF. 2015. Scents from Brazilian Cerrado: *Psidium myrsinites* DC. (Myrtaceae) leaves and inflorescences essential oil. J Essent Oil Res 27: 289 - 292. https://doi.org/10.1080/10412905.2015.1037020

Medeiros FCM, Del Menezzi CHS, Vieira RF, Fernandes YFM, Santos MCS, Bizzo HR. 2018. Scents from

Brazilian Cerrado: chemical composition of the essential oil from *Psidium laruotteanum* Cambess (Myrtaceae). J Essent Oil Res 30: 253 - 257. https://doi.org/10.1080/10412905.2018.1462740

- Medina AL, Reckziegel LI, Chaves FC, Salvador M, Zmbiazi RC, Dilva WP, Nora L, Rombaldi CV. 2011. Araçá (*Psidium cattleianum* Sabine) fruit extracts with antioxidant and antimicrobial activities and antiproliferative effect on human cancer cells. Food Chem 128: 916 - 922. https://doi.org/10.1016/j.foodchem.2011.03.119
- Mendes LA, Martins GF, Valbon WR, Souza TS, Menine L, Ferreira A, Ferreira MFS. 2017. Larvicidal effect of essential oils from Brazilian cultivars of guava on *Aedes aegypti* L. **Ind Crops Prod** 108: 684 689. https://doi.org/10.1016/j.indcrop.2017.07.034
- Mendonça RC, Felfili JM, Walter BMT, Silva Júnior MC, Rezende AV, Filgueiras TS, Nogueira PE, Fagg CW. 2008. Flora vascular do bioma cerrado: checklist com 12.356 espécies, In Sano SM, Almeida SP and Ribeiro JF: Cerrado: ecologia e flora. Ed. Embrapa Cerrados, Planaltina, Brasília, Brasil.
- Moraes MM, da Camara CAG, Santos ML, Fagg CW. 2012. Essential oil composition of *Eugenia langsdorffii* O. Berg.: Relationships between some terpenoids and toxicity against *Tetranychus urticae*. J Braz Chem Soc 23: 1647 1656. https://doi.org/10.1590/s0103-50532012005000029
- Moraes MM, da Camara CAG, Araujo CA. 2017. Chemical composition of essential oil from leaves of *Ocotea limae* Vattimo Gil. and *Ocotea gardneri* (Meisn.) Mez. growing wild in atlantic forest of North-Eastern Brazil. **Bol Latinoam Caribe Plant Med Aromat** 16: 585 592.
- Nascimento AF, Camara CAG, Moraes MM, Ramos CS. 2012. Essential oil composition and acaricidal activity of *Schinus terebinthifolius* from Atlantic forest of Pernambuco, Brazil against *Tetranychus urticae*. Nat Prod Commun 7: 129 - 132. https://doi.org/10.1177/1934578x1200700141
- Neves IA, da Camara CAG. 2011. Acaricidal activity against *Tetranychus urticae* and essential oil composition of four *Croton* species from Caatinga biome in Northeastern Brazil. Nat Prod Commun 6: 893 - 899. https://doi.org/10.1177/1934578x1100600633
- Neves RCS, da Camara CAG. 2016. Chemical composition and acaricidal activity of the essential oils from *Vitex agnus-castus* L. (Verbenaceae) and selected monoterpenes. An Acad Bras Ciênc 88: 1221 1233. https://doi.org/10.1590/0001-3765201620140050
- Oh MS, Yang JY, Kim MG, Lee HS. 2014. Acaricidal activities of β-caryophyllene oxide and structural analogues derived from *Psidium cattleianum* oil against house dust mites. **Pest Manag Sci** 70: 757 - 762. https://doi.org/10.1002/ps.3608
- Pino JA, Bello A, Urquiola A, Marbot R, Martí MP. 2004. Leaf oils of *Psidium parvifolium* Griseb. and *Psidium cattleyanum* Sabine from Cuba. J Essent Oil Res 16: 370 371. https://doi.org/10.1080/10412905.2004.9698745
- Pino JA, Marbot R, Payo A, Chao D, Herrera P. 2006. Aromatic plants from Western Cuba VII. Composition of the leaf oils of *Psidium wrightii* Krug et Urb., *Lantana involucrata* L., *Cinnamomum montanum* (Sw.) Berchtold et J. Persl. and *Caesalpinia violacea* (Mill.) Standley. J Essent Oil Res 18: 170 - 174. https://doi.org/10.1080/10412905.2006.9699058
- Ratter JA, Ribeiro JF, Bridgewater S. 1997. The brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80: 223 230. https://doi.org/10.1006/anbo.1997.0469
- Rodrigues VEG, Carvalho DA. 2001. Plantas medicinais no domínio dos cerrados. Ed. UFLA, Lavras, Minas Gerais, Brasil.
- Robertson JL, Jones MM, Olguin E, Alberts B. 2017. Bioassays with arthropods. Ed. CRC Press, Califórnia, USA.
- Sartorelli P, Correa DS. 2007. Constituents of essential oil from *Bauhinia forticata* Link. **J Essent Oil Res** 19:468 469.
- Souza TS, Ferreira MFS, Menini L, Souza JRCL, Parreira LA, Cecon PR, Ferreira A. 2017. Essential oil of *Psidium guajava*: Influence of genotypes and environment. Sci Hortic 216: 38 - 44. https://doi.org/10.1016/j.scienta.2016.12.026
- Souza TS, Ferreira MFS, Menini L, Souza JRCL, Bernardes CO, Ferreira A. 2018. Chemotype diversity of *Psidium* guajava L. Phytochemistry 153: 129 137. https://doi.org/10.1016/j.phytochem.2018.06.006

- Wang L, Wu Y, Huang T, Shi K, Wu Z. 2017. Chemical compositions, antioxidant and antimicrobial activities of essential oils of *Psidium guajava* L. leaves from different Geographic regions in China. Chem Biodivers 14: 1 - 14. https://doi.org/10.1002/cbdv.201700114
- Vassiliou VA, Kitsis P. 2013. Acaricide resistance in *Tetranychus urticae* (Acari: Tetranychidae) populations from *Cyprus*. J Econ Entomol 106: 1848 1854. https://doi.org/10.1603/ec12369