

BOLETÍN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS

17 (6): 555 - 565 (2018) © / ISSN 0717 7917 / www.blacpma.usach.cl

Artículo Original | Original Article Polygala anatolica Boiss. et Heldr.: Is A Potential Remedy for Inflammation and Pain?

[Polygala anatolica Boiss. et Heldr.: ¿Es un remedio potencial para la inflamación y el dolor?]

Esra Küpeli Akkol¹, Mert Ilhan^{1,2}, Ipek Süntar¹ & Ayten Ipek³

¹Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey

²Department of Pharmacognosy, Faculty of Pharmacy, Yüzüncü Yıl University, Van, Turkey

³Turkish Medicines and Medical Devices Agency, Ankara, Turkey

Contactos / Contacts: Esra Küpeli AKKOL - E-mail address: akkolesra@gmail.com

Abstract: Species of *Polygala* genus have been used for the treatment of inflamation and pain in Turkish traditional medicine. The aim of the present study is to assess the anti-inflammatory and analgesic activities of *P. anatolica*. n-Hexane, ethyl acetate and methanol extracts of the aerial parts and roots of *P. anatolica* were investigated for their anti-inflammatory and analgesic effects. The methanol extracts prepared from the aerial parts and roots of *P. anatolica* were found to be active in carrageenan- and PGE₂-induced paw edema models and in Whittle method. Methanolic extract of the aerial part inhibited serotonin-induced hind paw edema, while the root extract did not exert inhibitory effect in the same model. In addition, Fr. B and C obtained from the methanol extract of *P. anatolica* aerial parts showed significant anti-inflammatory activity. Morover, the analgesic effect of the methanol extracts prepared from the roots and aerial parts and Fr.B and Fr.C were found to be statistically significant without inducing ulceration. The methanol extract obtained from the aerial parts of the plant and its saponoside and flavonoid fractions showed anti-inflammatory and analgesic activities in the trials.

Keywords: Polygala anatolica; Polygalaceae; Anti-inflammatory; Analgesic

Resumen: Las especies del género *Polygala* se han utilizado para el tratamiento de la inflamación y el dolor en la medicina tradicional turca. El objetivo del presente estudio es evaluar las actividades antiinflamatorias y analgésicas de *P. anatolica*. Se investigaron los extractos de n-hexano, acetato de etilo y metanol de las partes aéreas y raíces de *P. anatolica* por sus efectos antiinflamatorios y analgésicos. Los extractos de metanol preparados a partir de las partes aéreas y raíces de *P. anatolica* se encontraron activos en modelos de edema de pata inducidos por carragenina y PGE₂ por el método de Whittle. El extracto metanólico de la parte aérea inhibió el edema de la pata trasera inducido por serotonina, mientras que el extracto de raíz no ejerció un efecto inhibidor en el mismo modelo. En suma, la fracción B y C obtenidos a partir del extracto metanólico de partes aéreas de *P. anatolica* mostraron actividad antiinflamatoria significativa. Además, el efecto analgésico de los extractos de metanol preparados a partir de las raíces y las partes aéreas y la fracción B y C resultaron ser estadísticamente significativas sin inducir la ulceración. El extracto de metanol obtenido de las partes aéreas de la planta y sus fracciones de saponósidos y flavonoides mostraron actividades antiinflamatorias y analgésicas en los ensayos.

Palabras clave: Polygala anatolica; Polygalaceae; Antiinflamatorio; Analgésico

Recibido | Received: May 23, 2018 Aceptado | Accepted: September 15, 2018

Aceptado en versión corregida | Accepted in revised form: September 25, 2018

Publicado en línea | Published online: November 30, 2018

Este artículo puede ser citado como / This article must be cited as: EK Akkol, M Ilhan, I Süntar, A Ipek. 2018 *Polygala anatolica* Boiss. et Heldr.: Is A Potential Remedy for Inflammation and Pain?. Bol Latinoam Caribe Plant Med Aromat 17 (6): 555 – 565.

INTRODUCTION

Polygala is a large genus and has a widespread distribution. Its species have been commonly used in traditional medicine, thereof. Twelve Polygala species namely, Polygala anatolica Boiss. et Heldr., P. alpestris (Rchb.), P. comosa Schkuhr., P. major Jacq., P. monspeliaca L., P. papilionaceae Boiss., P. pruinosa Boiss., P. stocksiana Boiss., P. supina Schreb., P. venulosa Sibth. & Sm., P. vulgaris L. and P. transcaucasia Tamamsch. are growing wild in Turkey (Cullen, 1965). In the ethnobotany studies, various Polygala species were determined to be utilized for their therapeutic features among people living in Anatolia. The roots of P. pruinosa subsp. pruinosa have been used as expectorant, galactagogue, diaphoretic and tonic in Elazığ province (Cakılcıoğlu et al., 2007). The decoction prepared from the aerial parts of P. anatolica has been used to releive edema, as expectorant, galactagogue and diuretic in the west Anatolia (Honda et al., 1996; Deniz et al., 2010).

Due to the widespread distribution, Polygala species have also been frequently used in traditional medicines worldwide. P. japonica Houtt. has been used for the treatment of acute tonsillitis. pharyngitis, pulmoner tuberculosis, esophageal cancer and pertussis; as sedative, expectorant and tonic in China (Harvey, 2008; Schmidt et al., 2008; Li et al., 2012). The roots of P. tenuifolia Willd. are utilized as tranquilizer and sedative and for the treatment of dementia and neurasthenia (Li et al., 2008; Kim et al., 2013). In Japan, the roots of the same plant are used as sedative, diuretic and expectorant as well as for the treatment of amnesia and inferitility (Chopra, 1956). P. sibirica L. is used as tonic for sedative and expectorant purposes, (Song et al., 2013); the roots of P. chinensis L. are used as antipyretic in China (Chopra, 1956). The decoction prepared from the root and branch barks of P. arillata Buch.-Ham. is used to treat diarrhea in Thailand (Suksri et al., 2005); root decoction of P. glomerata Lour. in the treatment of various inflammatory diseases (Chopra, 1956); P. paenea L. as diuretic and expectorant in India (Polonsky et al., 1960); the roots of P. elongata Klein ex Willd. and P. crotalarioides Buch.-Ham. ex DC. for the treatment of gall bladder diseases and constipation and in the treatment of snake bites (Chopra, 1956). The roots of P. senega L. are used against cough, chronic bronchitis, pharyngitis and rattlesnake bites by the north Americans (Lin et al., 2005; Li et al., 2006; Wu et al., 2008). In central America P. rosmarinifoli Wight & Arnin is used against snake bites and as expectorant (Alagammal et al., 2013); P. cyparissias St. Hillaire & Moquin, growing wild

in Brazil's Atlantic coast, is utilized for antiaging (Zhang *et al.*, 1994), aginst rheumatic pain, intestinal and kidney disorders and cancer (Stevenson & Weber, 1991; de Campos *et al.*, 1997); *P. spectabilis* roots in the treatment of hemorrhoids and amoebic infection (Andrade *et al.*, 1977); decoction prepared from the aerial parts of *P. amara* L. and *P. vulgaris* L. for the treatment of urinary tract disorders and as galactagogue in central Europe.

Previous phytochemical studies on *Polygala* species revealed that these species are rich in antrhacenes, oligosaccharides, flavonoids, xanthones, coumarins and saponins (Andrade *et al.*, 1977; Lin *et al.*, 2005; Song *et al.*, 2013). In this study, it was intended to explain the availability of *P. anatolica* in phytotherapy in terms of its potential anti-inflammatory and analgesic effects by using *in vivo* analgesic and anti-inflammatory activity models.

MATERIALS AND METHODS

Plant material

Aerial parts and roots of *Polygala anatolica* Boiss. et Heldr. were collected from Tulumtaş village, Gölbaşı, Ankara, Turkey in June 2013. A voucher specimen authenticated by Prof.Dr. Hayri Duman (Department of Biology, Faculty of Science, Gazi University) is deposited at the Herbarium of the Faculty of Pharmacy, Gazi University (GUE 3234).

Extraction and Fractionation Preparation of the extracts

An amount of 500 g of shade dried and powdered aerial parts and roots of the plant was subjected to successive solvent extractions with *n*-hexane, ethyl acetate (EtOAc) and methanol (MeOH) at room temperature for 48 h (6 x 5 L). After filtration, the extracts were evaporated by using a rotary evaporator (Buchi, Switzerland) at 40° C to dryness *in vacuo*. Yields of the aerial part and root extracts were 2.65% for *n*-hexane, 20.08% for EtOAc and 46.85% for MeOH; 5.02% for *n*-hexane 17.23% for EtOAc and 43.18% for MeOH, repectively.

Fractionation of the methanol extract

Two grams of the fraction was subjected to chromatographic separation in Silica gel column (Silica gel 70-230 mesh, 60 A°, Merck Art. 7734) using CHCl₃/MeOH (99:1); (98:2); (97:3); (96:4); (95:5); (90:10); (85:15); (80:20); (75:25); (70:30); (60:40) eluent systems and eluents were combined as follows after TLC control using CHCl₃/Gl. acetic acid/MeOH/H₂O (60:32:12:8) as mobile phase: [Fr. A] (72.3 mg), [Fr. B] (315.8 mg) and [Fr. C] (254.7

mg).

Biological activity tests

Animals

Male Swiss albino mice weighing 20-25 g were purchased from Laboratory of Experimental Animals, Kobay, Turkey. The animals were left for 3 days at room conditions for acclimatization and maintained on standard pellet diet and water ad libitum throughout the experiment. A minimum of six animals were used in each group. Throughout the experiments, animals were processed according to the suggested European ethical guidelines for the care of laboratory animals. The present study was performed according to the international rules considering the animal experiments biodiversity rights (Gazi University Ethical Council Project Number: G.U.ET-14.79).

Preparation of test samples for bioassay

Test samples were given orally to test animals after suspending in a mixture of distilled water and 0.5% sodium carboxymethyl cellulose (CMC). The control group animals received the same experimental handling as those of the test groups except that the drug treatment was replaced with appropriate volumes of the dosing vehicle. Either indomethacin (10 mg/kg) or acetyl salicylic acid (ASA) (100 mg/kg) in 0.5% CMC was used as reference drugs.

Anti-inflammatory activity

The anti-inflammatory activity was assessed using carrageenan-, prostaglandin E_2 (PGE₂)-, and serotonin-induced hind paw edema and acetic acid-induced capillary permeability in the mice.

Carrageenan-induced hind paw edema

For the determination of the effects on acute inflammation, carrageenan-induced paw edema model was employed with some modifications (Kasahara et al., 1985). Sixty minutes after the oral administration of either test sample or dosing vehicle, each mice was injected with freshly prepared (0.5 mg/25µl) suspension of carrageenan (Sigma, St. Louis, Missouri, USA) in physiological saline (154 mM NaCl) into subplantar tissue of the right hind paw. As the control, 25 µl saline solution was injected into that of the left hind paw. Paw edema was measured in every 90 min during 6 h after induction of inflammation. The difference in footpad thickness between the right and left foot was measured with a pair of dial thickness gauge callipers (Ozaki Co., Tokyo, Japan). Mean values of treated groups were compared with mean values

of a control group and analyzed using statistical methods.

Serotonin-induced hind paw edema

The method of Kasahara *et al.* (1985) was used. Sixty minutes after the oral administration of test sample or dosing vehicle each mouse was injected with serotonin (serotonin creatinin sulfate, Merck, Art. 7768) in Tyrode's solution (0.5 μg/5μl) into subplantar tissue of the right hind paw and 5 μl of Tyrode's solution into that of the left as secondary control. Measurements were done and evaluated as described above in every 6 min during 30 min.

Acetic acid-induced increase in capillary permeability

Effect of the test samples on the increased vascular permeability induced by acetic acid in mice was determined according to Whittle method with some modifications (Yeşilada, 1991). Each test sample was administered orally to a group of 10 mice in 0.2 ml/20 g body weight. Thirty minutes after the administration each mice was injected with 0.1 ml of 4% Evans blue (Sigma, St. Louis, Missouri, USA) in saline solution (iv.) at the tail. Then, 10 min after the iv. injection of the dye solution, 0.4 ml of 0.5% (v/v) AcOH was injected ip. After 20 min, the mice were killed by dislocation of the neck, and the viscera were exposed and irrigated with distilled water, which was then poured into 10 ml volumetric flasks through glass wool. Each flask was made up to 10 ml with distilled water, 0.1 of 0.1 N NaOH solution was added to the flask, and the absorption of the final solution was measured at 590 nm (Beckmann Dual Spectrometer). In control animals, a mixture of distilled water and 0.5% CMC was given orally, and they were treated in the same manner as described above.

PGE2-induced hind paw edema model

PGE2-induced hind paw edema model was used for determination of anti-inflammatory (Kasahara et al., 1985). The difference in footpad thickness between the right and left foot was measured with a pair of dial thickness gauge calipers (Ozaki Co., Tokyo, Japan). Mean values of treated groups were compared with mean values of a control group and analyzed using statistical methods, 60 min after the oral administration of test sample or dosing vehicle, each mouse was injected with freshly prepared (5 µg/5µl) suspension of PGE₂ (Fluka Chemie AG, Art. 82475) in Tyrode's solution into subplantar tissue of the right hind paw. As the control, 5 µl Tyrode's solution was injected into that of the left hind paw. Paw edema was

measured in every 15 min during 75 min after induction of inflammation. The difference in footpad thickness was measured by a gauge calipers (Ozaki Co., Tokyo, Japan). Mean values of treated groups were compared with mean values of a control group and analyzed using statistical methods. Indomethacin (10 mg/kg) was used as the reference drug.

Analgesic activity

P-benzoquinone-induced abdominal constriction test was used to evaluate the analgesic activity in mice.

p-Benzoquinone-induced abdominal constriction test

An hour after orally administering *D. vulgaris* fruit extracts or the reference agent ASA (100 mg/kg) to different groups of mice, a 2.5% *p*-benzoquinone solution dissolved in distilled water was injected intraperitoneally to produce pain at a dose of 0.1 ml/10 g. After 5 min, the writhing reflex response of each animal was counted for 15 min. The inhibition in reflex response was statistically evaluated (Okun *et al.*, 1963; Yesilada & Küpeli, 2007).

Statistical analysis of data

Data obtained from the animal experiments were expressed as the mean \pm standard error of mean. Statistical differences between the treatment and control groups were calculated using analysis of variance and Students–Newman–Keuls post hoc tests. A probability of p<0.05 was considered to be significant (* p<0.05; ** p<0.01; *** p<0.001).

RESULTS

Carrageenin-induced paw edema model was selected as in vivo experimental model for broad anti-inflammatory spectrum of determination (Winter et al., 1968). As shown in Table No. 1, extracts of the aerial parts and roots of plant the demonstrated comparable antiinflammatory effect with the reference drug indomethacin. The methanol extract obtained from the aerial parts was selected as the material for further biological activity analyses due to its higher efficacy over the methanol extract obtained from the roots of the plant. Two extracts were found to have similar groups of compounds in TLC analysis.

As a result of fractionation by column chromatography three subfractions were obtained from the methanol extract. When the obtained subfractions were applied to the experimental animals, Fr.A was found to be ineffective in the

carrageenin-induced paw edema model; Fr.B (24.1% inhibition) and Fr.C (26.9% inhibition) were found to have siginificant activity close to methanol extract (Table No. 1). TLC analysis on the fractions that were employed in the BAGF assays revealed that Fr.B and Fr.C were determined to have high saponin and flavonoid contents, respectively.

In order to verify the results of carrageenin edema model, plant extracts and fractions were applied on the other experimental models of inflammation. In "Whittle Method", based on acetic acid-induced inhibition of increased capillary permeability, methanol extracts of the aerial parts and roots of the plant were found to have significant anti-inflammatory activity, however, the other extracts devoid of such effect. Fr.B and Fr.C obtained from the aerial part-methanol extract, were found to provide high rates of inhibition (Figure No. 1).

To verify the findings in carrageenin-induced hind paw edema model, other anti-inflammatory activity determination method, the "serotonin-induced hind paw edema" model was used. As shown in Table No. 2, serotonin edema model outcome supported the results obtained in the carrageenan edema model. Therefore, the findings showed that both aerial part and root extracts in various polarity were not effective in this model.

In the carrageenan edema model, edema formation is considered as a 2-stage phase. In the first hour, edema occurs depending on the trauma injury and is characterized by serotonin and histamine release. Second stage of three hours or longer, prostaglandin is primarily responsible for the development of edema. This study showed that methanol extracts prepared from the aerial parts and roots of the plant significantly inhibited edema formation at periods when the prostaglandin release occured. This effect was close to the reference drug, indomethacin, a prostaglandin biosynthesis inhibitor. Our study revealed that ehanol extract and subfractions, Fr.B and Fr.C have compounds directly responsible from the anti-inflammatory activity.

As it is known, anti-inflammatory effects can arise in many different ways. Especially in the elucidation of the mechanism of action of the compounds, inhibitory effects on the various enzymes and mediators give valuable insight (Singh *et al.*, 1987). Prostaglandins occurred via cyclooxygenase pathway are the most important mediators of inflammation in the body (Yeşilada, 1991). Nonsteroidal anti-inflammatory drugs such

as aspirin shows its effect by inhibiting the synthesis of prostaglandins. In order to determine the role of prostaglandins, anti-inflammatoy effect of the extracts and farctions were invesitgated by using "PGE₂- induced hind paw edema" model. In

this model, the methanol extracts and its fractions, Fr.B and Fr.C., were found to have equivalent activity to that of indomethacin, which supported the results of carrageenan-induced hind paw edema model (Table No. 3).

Table No. 1

Preliminary anti-inflammatory activity assessment of extracts of *P. anatolica* aerial parts (AE) and roots (R) and subfractions of the MeOH extract of prepared from *P. anatolica* aerial parts using carrageenan-induced paw edema model in mice

35	using carrageenan-induced paw edema model in mice							
Material	Parts used	Dose	Swelling thickness (x 10-2mm) ± SEM (Inhibition %)					
		mg/kg	90 min	180 min	270 min	360 min		
Control			47.5±2.8	50.9±3.1	58.6±4.2	61.7±3.9		
n-Hexane extract	AE	100	51.4±3.7	54.8±4.0	59.2±3.6	64.8±4.3		
	R	100	46.4±3.0 (2.3)	49.6±3.3 (2.6)	59.1±3.8	62.2±4.1		
EtOAc extract	AE	100	46.1±2.8 (2.9)	44.2±3.3 (13.2)	59.1±4.3	64.6±3.7		
	R	100	43.5±3.8 (8.4)	45.9±4.2 (9.8)	53.6±5.1 (8.5)	62.8±5.2		
MeOH extract	AE	100	39.6±2.5 (16.6)	41.5±2.1 (18.5)	44.3±2.7 (24.4)*, †	42.8±2.4 (30.6)**, [†]		
	R	100	40.3±3.0 (15.2)	43.7±2.8 (14.1)	46.2±3.2 (21.1)	45.3±2.9 (26.6)*, [†]		
Indomethacin		10	37.4±2.3 (21.3)	37.8±2.0 (25.7)*	39.5±2.4 (32.6)**	36.2±2.5 (41.3)***		
Control			39.7±2.3	43.5±2.8	45.9±2.1	49.7±2.4		
Fr. A		100	42.5±3.2	44.8±3.5	49.6±4.2	51.9±4.8		
Fr. B		100	35.7±2.1 (10.1)	38.3±1.8 (11.9)	35.4±2.2 (22.9)	37.7±1.9 (24.1)*,†		
Fr. C		100	32.3±1.7 (18.6)	36.1±2.0 (17.0)	34.2±2.1 (25.4)*, [†]	36.3±1.7 (26.9)**,†		
Indomethacin		10	30.1±2.0 (24.2)*	33.5±1.6 (22.9)*	31.3±1.9 (31.8)**	31.4±2.1 (36.8)***		

Compared with respect to control, values are mean \pm SEM (n=6), * p<0.05. **p<0.01. *** p<0.001. ns p<0.05; Compared with respect to control, values are mean \pm SEM (n=6), † p<0.05. ††p<0.01. †† p<0.001. ns p<0.05. Data were analyzed by ANOVA followed Dunnett's multiple comparison t-test; AE: Aerial part; R: Root

Increase in body temperature and pain are among the most obvious symptoms observed in case of inflammation (Yeşilada, 1991). Pain is usually interpreted as a marker of inflammation. The occurrence of chronic, non-inflammatory pain syndromes is higher amongst patients with inflammatory diseases than in the population (Lee, 2013). Goldring reported that increase of inflammatory markers would rise pain (Goldring & Otero, 2011). Similarly, Omoigui based pain theory offered that the origin of all pains are inflammation

and tissue injury stimulates inflammatory markers that leads to changes in markers (Omoigui, 2007). It is therefore ideal for an active compound to have the effects of both anti-inflammatory and analgesic (Kasahara *et al.*, 1985). In our study, the analgesic effect of the extracts and fractions were investigated by using "*p*-benzoquinone-induced pain test" and the methanol extracts prepared from the roots and aerial parts of the plant and Fr.B and Fr.C were found to be statistically significant without inducing ulceration (Figure No. 2).

Table No. 2
Effects of the extracts of P. anatolica aerial parts (AE) and roots (R) on serotonin-induced paw edema in mice

			Swelling thickness (x 10-2mm) ± SEM (Inhibition %)					
Material	Parts used	Dose mg/kg	0 min	6 min	12 min	18 min	24 min	30 min
Control			3.9±1.3	11.6±3.7	24.8±3.4	32.9±2.5	34.1±2.9	39.9±4.2
<i>n</i> -Hexane extract	AE	100	4.1±1.7	14.2±2.3	27.9±3.0	34.1±3.3	40.2±3.4	43.3±3.8
	R	100	4.0±1.9	16.2±3.9	29.6±5.7	39.1±4.3	43.0±4.8	49.6±5.7
EtOAc extract	AE	100	3.9±1.6	17.2±3.8	28.5±3.1	37.4±4.2	40.8±5.1	45.7±5.4
	R	100	3.8±1.1	13.4±3.2	24.9±4.2	35.0±3.7	39.6±3.2	41.1±5.0
MeOH extract	AE	100	4.0±1.2	11.9±2.3	21.7±2.9 (12.5)	29.9±3.4 (9.1)	35.4±3.8	41.0±4.7
	R	100	3.9±1.3	12.6±3.9	20.2±3.1 (18.5)	34.8±3.7	35.6±4.1	42.4±4.5
Indomethacin		10	3.9±1.1	10.2±2.4 (12.1)	20.3±2.0 (18.1)	25.1±2.2 (23.7)*	23.7±2.4 (30.5)**	28.1±2.5 (29.6)*

Compared with respect to control, values are mean \pm SEM (n=6), * p<0.05. **p<0.01.
*** p<0.001. ns p<0.05; Compared with respect to control, values are mean \pm SEM (n=6),
† p<0.05. ††p<0.01. ††† p<0.001. ns p<0.05. Data were analyzed by ANOVA followed Dunnett's
multiple comparison t-test; AE: Aerial part; R: Root

Table No. 3

Effects of the extracts of P. anatolica aerial parts (AE) and roots (R) and subfractions of the MeOH extract of prepared from P. anatolica aerial parts on PGE2-induced paw edema in mice

		ĺ	Swelling thickness (x 10-2mm) ± SEM (Inhibition %					
Material	Parts used	Dose mg/kg	0 min	15 min	30 min	45 min	60 min	75 min
		0 0						
Control			1.9±0.4	11.6±1.1	14.0±1.5	18.4±1.3	15.2±1.4	10.8±1.7
<i>n</i> -Hexane extract	AE	100	2.1±0.9	12.7±1.4	14.6±1.9	19.7±2.2	17.8±2.1	13.5±2.5
	R	100	2.2±1.3	14.5±2.0	16.8±3.1	19.7±3.4	20.8±2.7	19.6±2.3
EtOAc extract	EtOAc extract	AE	100	2.4±1.1	14.6±1.2	11.5±1.5 (17.9)	15.6±1.7 (15.2)	18.1±1.8
		R	100	2.0±0.8	10.4±1.1 (10.3)	13.2±1.3 (5.7)	19.1±1.1	21.2±1.9
MeOH extract	AE	100	1.8±0.7 (5.2)	10.2±1.1 (12.1)	9.5±0.4 (32.1)**, ns	12.2±0.7 (33.7)**, ns	9.8±0.6 (35.5)**, ns	9.4±0.9 (12.9)
	R	100	1.9±0.7	9.4±1.2 (18.9)	10.1±1.3 (27.9)*,†	13.2±1.1 (28.2)*, [†]	10.3±0.9 (32.2)**,†	9.1±1.0 (15.7)
Indomethacin		10	1.8±0.9 (5.2)	8.3±1.1 (28.4)*	9.2±1.0 (34.3)**	11.3±0.8 (38.6)***	9.4±0.8 (38.2)***	9.7±1.3 (10.2)
Fr. A		100	1.6±0.5	11.8±1.1	15.7±1.5 (6.5)	19.9±1.8	15.4±0.9 (9.9)	14.2±1.3
Fr. B		100	1.4±0.6 (12.5)	10.7±0.9	11.2±1.1 (33.3)**,†	15.3±1.4 (20.7)	12.8±0.7 (25.1)**, [†]	12.2±1.1 (10.3)
Fr. C		100	1.9±0.8	9.7±1.0 (4.9)	11.6±0.9 (30.9)**, [†]	14.8±0.7 (23.3)*, ††	12.1±0.8 (29.2)**, ††	11.9±1.2 (12.5)
Indomethacin		10	1.7±1.1	8.2±1.3 (19.6)	10.4±0.7 (38.1)***	11.3±1.0 (41.5)***	10.4±0.8 (39.2)***	9.7±0.5 (28.7)**

Compared with respect to control, values are mean \pm SEM (n=6), * p<0.05. **p<0.01.
*** p<0.001. ns p<0.05; Compared with respect to control, values are mean \pm SEM (n=6),
† p<0.05. ††p<0.01. ††† p<0.001. ns p<0.05. Data were analyzed by ANOVA followed Dunnettís multiple comparison t-test; AE: Aerial part; R: Root

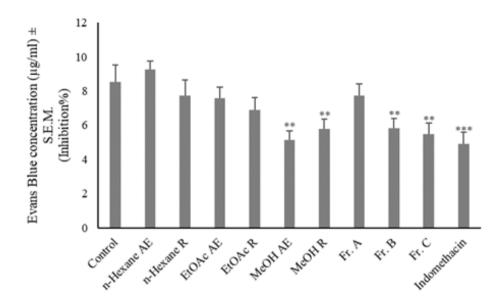


Figure No. 1

Effects of the extracts of *P. anatolica* aerial parts and roots and subfractions of the MeOH extract of prepared from *P. anatolica* aerial parts on increased vascular permeability induced by acetic acid in mice

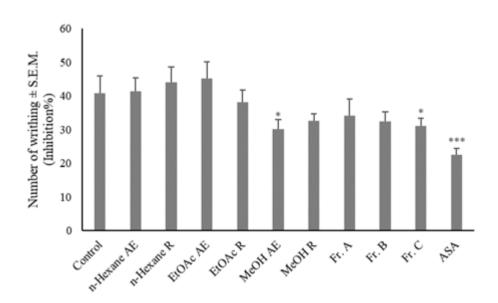


Figure No. 2

Analgesic effects of the extracts of *P. anatolica* aerial parts and roots and subfractions of the MeOH extract of prepared from *P. anatolica* aerial parts

DISCUSSION

Polygala species are important and popular plants used in folk medicine as well as in the modern medical system. P. senega and P. tenuifolia roots, registered in various pharmacopoeia monographs as officinal species, are used as expectorants due to their secretion enhancing effects; to treat

inflammation of the mucous membrane, chronic bronchitis and as tranquilizer and sedative in case of insomnia (Samuelsson, 2004; Sun *et al.*, 2007).

In ethnobotanical field studies conducted in our country, it has been reported that different species of *Polygala* have been used for the treatment of various diseases in Anatolia. *P.*

anatolica, the plant material used in the present study, was reported to be used as expectorant, galactagogue, diuretic and diaphoretic as well as to treat inflammation when prepared as decoction from the aerial parts in Afyon, Kütahya, Denizli, Muğla and Aydın and Uşak Provinces (Honda et al., 1996; Deniz et al., 2010). In the present study, anti-inflammatory and analgesic effects of the aerial parts and roots of *P. anatolica*, one of the *Polygala* species widespread in Turkey, were investigated in order to explain the usage of the traditional medicine and to emphasize its importance in phytotherapy.

COX-1 inhibitors such as nonsteroidal antiinflammatory drug, aspirin, causes gastric ulceration, while COX-2 inhibitors, do not inhibit the gastric mucosa protective effect of the prostaglandins (PGE 1) (Christopher, 1995). In our study, the observed lesions and ulcers in the stomachs of mice treated with the extracts and fractions also supports the idea of inhibition of prostaglandins.

Several studies were conducted Polygala species that were used for the treatment of various inflammatory diseases. In a previous study conducted by El Sayah et al. (1999), it was reported that aqueous ethanol extracts of P. cyparissias noncompetitively inhibited the inhibitory mediators, histamine, bradykinin, PGE-2 and thromboxane A2 in guinea pig trachea (El Sayah et al., 1999). Zhang et al. (2008) isolated the compound, reinioside C from P. fallax and reported that the mentioned compound inhibited the asymmetric dimethylarginine-induced TNF-α production in monocytes and weakened the the formation of reactive oxygen species and NF-kB activity (Zhang et al., 2008). Bai et al. (2009) also demonstrated that reinioside C, reduced the adhesion of monocytes to the endothelial cells, attenuated the mRNA expression of NADPH oxidase, ROS formation and NF-kB activation in endothelial cells. Kou et al. (2006) reported that the aqueous extract prepared from the leaves of P. japonica, used for the treatment of inflammatory diseases in folk medicine, have significant inhibitory effect on histamine-induced peritoneal and cutaneous vascular permeability, and picryl chloride-induced ear swelling. Extract was also shown to decrease histamine-induced paw edema and prostaglandin E₂ formation in carrageenan-induced air pouch.

Triterpenic saponins, 3-O- β -D-glucopyranosylbayogenin, 28-O- β -D-xsylopyranosyl (1 \rightarrow 4) - α -L-rhamnopyranosyl (1 \rightarrow 2)- β -D-glucopyranosyl ester, poligalasaponin V and bayogenin-3-O- β -D-glucopyranoside isolated by

Wang et al. (2008), were reported to have antiinflammatory activity in carrageenin-induced hind paw edema model in mice. Bayogenin-3-O-β-Dglucopyranoside inhibited the inflammatory mediators without affecting macrohage viability in LPS-induced RAW264.7 macrophages (Wang et al., 2008). In a study conducted by Van et al. LPS-induced (2009)murine macrophage production effects of the polysaccharide fraction, polyphenolic fraction and EtOAc/H2O fraction of P. senega was evaluated on RAW164.7 cells. Only polyphenolic fraction showed increases in IL-6 level: other fractions decreased the production of IL-1β, TNF-α and IL-6 levels (Van et al., 2009).

In a study conducted by Hong et al., it was determined that intrarectal injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS) in murine model of experimental colitis, P. tenuifolia roots reduced the inflammation degree and IFN- γ levels, improved the infiltration of polymorphonuclear cells and histological changes such as multiple erosive lesions and increased IL-4 production (Hong *et al.*, 2002).

The aqueous extract prepared from the roots of P. tenuifolia inhibited LPS induced TNF- α secretion showing its anti-inflammatory activity (Kim et al., 1998). In a similar study, tenuifolioside A, isolated from the roots of P. tenuifolia, inhibited the NO, iNOS, PGE₂ and COX-2 production and supressed TNF- α ve IL-1 β secretion and inhibited NF- κ B ve MAPK pathways in LPS-stimulated RAW264.7 and murine peritoneal macrophages (Kim et al., 2013).

There are several biological activity studies contucted on saponins due to their wide distribution and their physical, chemical and physiological differences. In the previous activity studies, haemolytic, expectorant, analgesic, antiinflammatory, antipyretic, antioxidant, hypoglyantiphototoxic, hypocholesterolemic, cemic antiobesity, diuretic, neuroprotective, antispasmodic, antiulcer, estrogenic, antiviral, antifungal, anti-allergic, chemopreventive, cytotoxic, atigenotoxic, antimutagenic activities have been reported for saponins (Fleming et al., 2012; Liu et al., 2012; Weng et al., 2012; Podolak et al., 2013). Due to the wide range of biological activity they show saponin containing drugs are used for various purposes in traditional folk medicine and cosmetic industries. Saponins are considered to be the main components of the many herbal drugs used in folk medicine. The pharmacological action of these drugs are also related to the saponins. Indeed, saponins and polyphenols play a key role in traditional Chinese medicine. These two secondary metabolite groups were determined to be responsible for the majority of the observed biological activities (Guclu-Ustundag & Mazza, 2007). On the other hand, flavonoids isolated from various plant also have antioxidant (Sun et al., 2007; Hu et al., 2009), antibacterial (Capra et al., 2010), antiviral (Lee et al., 2004), antifungal (Koo et al., 2000; Kawashima et al., 2004), antiplasmodial and anticancer (Katselis et al., 2007) effects. In structure-activity studies, these compounds were determined to have anti-inflammatory effect by inhibiting NF-kB, COX-2, iNOS and LOX (Winter et al., 1968; Kupeli Akkol et al., 2010;). The findings obtained in the present study supported the literature information given on saponins and flavonoids.

CONCLUSION

The findings obtained in the present study experimentally verified the utilization of *P. anatolica* for the treatment of inflammatory diseases and revealed its efficacy on the treatment of pain. Saponin and flavonoid fractions obtained from the plant as the active ingredients were found to have prostaglandin inhibitory effect which results in ulceration. Therefore, it is recommended that *Polygala anatolica* should be carefully utilized for the treatment of inflammatory disorders.

REFERENCES

- Alagammal M, Packia Lincy M, Mohan VR. 2013. Hepatoprotective and antioxidant effect of *Polygala rosmarinifolia* Wight & Arn against CCl4 induced hepatotoxicity in rats. **J Pharmacogn Phytochem** 2: 118 124.
- Andrade CHS, Fo FB, Gottlieb OR, Silveira ER. 1977. The chemistry of brasilian Polygalaceae I. Xanthones from *Polygala spectabilis*. **Lloydia** 40: 344 346.
- Bai YP, Hu CP, Chen MF, Xu KP, Tan GS, Shi RZ, Li YJ, Zhang GG. 2009. Inhibitory effect of reinioside C on monocyte-endothelial cell adhesion induced by oxidized low-density lipoprotein via inhibiting NADPH oxidase/ROS/NF-kappaB pathway. Naunyn Schmiedebergs Arch Pharmacol 380: 399 406.
- Çakılcıoğlu U, Türkoğlu İ, Kürşat M. 2007. Harput (Elazığ) ve çevresinin etnobotanik özellikleri. **Doğu Anadolu Bölgesi Arastırmaları**: 22 28.
- Capra JC, Cunha MP, Machado DG, Zomkowski AD, Mendes BG, Santos AR, Pizzolatti MG, Rodrigues AL. 2010. Antidepressant-like effect of scopoletin, a coumarin isolated from *Polygala sabulosa*

- (Polygalaceae) in mice: Evidence for the involvement of monoaminergic systems. **Eur J Pharmacol** 643: 232 238.
- Chopra RN, 1956. Glossary of Indian Medicinal Plants (Third edition). Council of Scientific and Industrial Research, New Delhi, India.
- Christopher L. 1995. Alternative means of support. **Horticulture** 73: 26 33.
- Cullen J, 1965. *Polygala* L., In Davis PH: Flora of Turkey and the East Aegean Islands. University of Edinburgh, Edinburgh, Scotland.
- de Campos RO, Santos AR, Vaz ZR, Pinheiro TR, Pizzolatti MG, Cechinel Filho V, Delle Monache F, Yunes RA, Calixto JB. 1997. Antinociceptive properties of the hydroalcoholic extract and preliminary study of a xanthone isolated from *Polygala cyparissias* (Polygalaceae). **Life Sci** 61: 1619 1630.
- Deniz L, Serteser A, Kargıoğlu M. 2010. Uşak Üniversitesi ve yakın çevresindeki bazı bitkilerin mahalli adları ve etnobotanik özellikleri. **AKÜ Fen Bilimleri Dergisi** 1: 57 72.
- El Sayah M, Cechinel-Filho V, Pinheiro TR, Yunes RA, Calixto JB. 1999. *In vitro* effect of the extract and the 1,7-dihydroxy-2,3-dimethoxy xanthone from *Polygala cyparissias* on the contractions induced by inflammatory mediators and ovalbumin in normal and actively sensitised trachea from guinea pig. **Inflamm Res** 48: 218 223.
- Fleming MT, Sonpavde G, Kolodziej M, Awasthi S, Hutson TE, Martincic D, Rastogi A, Rousey SR, Weinstein RE, Galsky MD, Berry WR, Wang Y, Boehm KA, Asmar L, Rauch MA, Beer TM. 2012. Association of rash with outcomes in a randomized phase II trial evaluating cetuximab in combination with mitoxantrone plus prednisone after docetaxel for metastatic castration-resistant prostate cancer. Clin Genitourin Cancer 10: 6 14.
- Goldring MB, Otero M. 2011. Inflammation in osteoarthritis. **Curr Opin Rheumatol** 23: 471 478.
- Guclu-Ustundag O, Mazza G. 2007. Saponins: properties, applications and processing. **Crit Rev Food Sci Nutr** 47: 231 258.
- Harvey AL. 2008. Natural products in drug discovery. **Drug Discov Today** 13: 894 901.
- Honda G, Yesilada E, Tabata M, Sezik E, Fujita T,

- Takeda Y, Takaishi Y, Tanaka T. 1996. Traditional medicine in Turkey. VI. folk medicine in West Anatolia: Afyon, Kütahya, Denizli, Muğla, Aydın provinces. **J Ethnopharmacol** 53: 75 87.
- Hong T, Jin GB, Yoshino G, Miura M, Maeda Y, Cho S, Cyong JC. 2002. Protective effects of *Polygala* root in experimental TNBS-induced colitis in mice. **J Ethnopharmacol** 79: 341 346.
- Hu Y, Liao HB, Liu P, Guo DH, Rahman K. 2009. A bioactive compound from *Polygala tenuifolia* regulates efficiency of chronic stress on hypothalamic-pituitary-adrenal axis. **Pharmazie** 64: 605 608.
- Kasahara Y, Hikino H, Tsurufuji S, Watanabe M, Ohuchi K. 1985. Antiinflammatory actions of ephedrines in acute inflammations. **Planta Med** 51: 325 331.
- Katselis GS, Estrada A, Gorecki DK, Barl B. 2007. Adjuvant activities of saponins from the root of *Polygala senega* L. **Can J Physiol Pharmacol** 85: 1184 1194.
- Kawashima K, Miyako D, Ishino Y, Makino T, Saito K, Kano Y. 2004. Anti-stress effects of 3,4,5-trimethoxycinnamic acid, an active constituent of roots of *Polygala tenuifolia* (Onji). **Biol Pharm Bull** 27: 1317 1319.
- Kim HM, Lee EH, Na HJ, Lee SB, Shin TY, Lyu YS, Kim NS, Nomura S. 1998. Effect of *Polygala tenuifolia* root extract on the tumor necrosis factor-alpha secretion from mouse astrocytes. **J Ethnopharmacol** 61: 201 208.
- Kim KS, Lee DS, Bae GS, Park SJ, Kang DG, Lee HS, Oh H, Kim YC. 2013. The inhibition of JNK MAPK and NF-κB signaling by tenuifoliside A isolated from *Polygala tenuifolia* in lipopolysaccharide-induced macrophages is associated with its anti-inflammatory effect. **Eur J Pharmacol** 721: 267 276.
- Koo HN, Jeong HJ, Kim KR, Kim JC, Kim KS, Kang BK, Kim HM, Kim JJ. 2000. Inhibitory effect of interleukin-1alpha-induced apoptosis by *Polygala tenuifolia* in Hep G2 cells. **Immunopharmacol Immunotoxicol** 22: 531 544.
- Kou J, Si M, Dai G, Lin Y, Zhu D. 2006. Antiinflammatory activity of *Polygala japonica* extract. **Fitoterapia** 77: 411 - 415.
- Kupeli Akkol E, Orhan DD, Gurbuz I, Yesilada E. 2010. *In vivo* activity assessment of a "honey-bee pollen mix" formulation. **Pharm Biol** 48: 253 259.

- Lee HJ, Ban JY, Koh SB, Seong NS, Song KS, Bae KW, Seong YH. 2004. Polygalae radix extract protects cultured rat granule cells against damage induced by NMDA. Am J Chin Med 32: 599 610.
- Lee YC. 2013. Effect and treatment of chronic pain in inflammatory arthritis. **Curr Rheumatol Rep** 15: 300.
- Li C, Yang J, Yu S, Chen N, Xue W, Hu J, Zhang D. 2008. Triterpenoid saponins with neuroprotective effects from the roots of *Polygala tenuifolia*. **Planta Med** 74: 133 141.
- Li C, Fu J, Yang J, Zhang D, Yuan Y, Chen N. 2012. Three triterpenoid saponins from the roots of *Polygala japonica* Houtt. **Fitoterapia** 83: 1184 1190.
- Li TZ, Zhang WD, Yang GJ, Liu WY, Liu RH, Zhang C, Chen HS. 2006. New flavonol glycosides and new xanthone from *Polygala japonica*. **J Asian Nat Prod Res** 8: 401 409.
- Lin LL, Huang F, Chen SB, Yang DJ, Chen SL, Yang JS, Xiao PG. 2005. Xanthones from the roots of *Polygala caudata* and their antioxidation and vasodilatation activities *in vitro*. **Planta Med** 71: 372 375.
- Liu H, Patil HP, de Vries-Idema J, Wilschut J, Huckriede A. 2012. Enhancement of the immunogenicity and protective efficacy of a mucosal influenza subunit vaccine by the saponin adjuvant GPI-0100. **PLoS One** 7: e52135.
- Okun R, Liddon SC, Lasagna L. 1963. The effect of aggregation, electric shock and adrenergic bloking drugs on inhibition of the "writhing syndrome". **J Pharmacol Exp Ther** 139: 107 109.
- Omoigui S. 2007. The biochemical origin of pain—proposing a new law of pain: The origin of all pain is inflammation and the inflammatory response. Part 1 of 3–A unifying law of pain. **Med Hypotheses** 69: 70 82.
- Podolak I, Koczurkiewicz P, Galanty A, Michalik M. 2013. Cytotoxic triterpene saponins from the underground parts of six *Lysimachia* L. species. **Biochem Syst Ecol** 47: 116 120.
- Polonsky J, Pourrat F, Rondest JS. 1960. Study of the constituents of the roots of *Polygala* paenea. The Structure of a New Sapogenin. Polygalacic Acid. **Comptes Rendus Chimie** 251: 2347.
- Samuelsson G, 2004. Drugs of Natural Origin a

- **Textbook of Pharmacognosy (5th Edition)**. Swedish Pharmaceutical Press, Stockholm, Sweden.
- Schmidt B, Ribnicky DM, Poulev A, Logendra S, Cefalu WT, Raskin I. 2008. A natural history of botanical therapeutics.

 Metabolism 57: 3 9.
- Singh B, Pandey VB, Joshi VK, Gambhir SS. 1987.
 Anti-inflammatory studies on *Polygonum glabrum*. **J Ethnopharmacol** 19: 255 267.
- Song YL, Zeng KW, Shi TX, Jiang Y, Tu PF. 2013. Sibiricasaponins A-E, five new triterpenoid saponins from the aerial parts of *Polygala sibirica* L. **Fitoterapia** 84: 295 301.
- Stevenson R, Weber JV. 1991. Synthesis of lignan aryldihydronaphthalene lactones by cyclization of cinnamyl arylpropiolate esters: revised structure of beta-apopolygamatin. **J Nat Prod** 54: 310 314.
- Suksri S, Premcharoen S, Thawatphan C, Sangthongprow S. 2005. Ethnobotany in Bung Khong Long non-hunting area, northeast Thailand. **Kasetsart Journal:**Natural Science 39: 519 533.
- Sun XL, Ito H, Masuoka T, Kamei C, Hatano T. 2007. Effect of *Polygala tenuifolia* root extract on scopolamine-induced impairment of rat spatial cognition in an eight-arm radial maze task. **Biol Pharm Bull** 30: 1727 1731.
- Van Q, Nayak BN, Reimer M, Jones PJ, Fulcher RG, Rempel CB. 2009. Anti-inflammatory effect of *Inonotus obliquus*, *Polygala senega* L., and *Viburnum trilobum* in a cell screening assay. **J Ethnopharmacol** 125: 487 493.
- Wang H, Gao J, Kou J, Zhu D, Yu B. 2008. Antiinflammatory activities of triterpenoid

- saponins from *Polygala japonica*. **Phytomedicine** 15: 321 326.
- Weng A, Thakur M, Beceren-Braun F, Bachran D, Bachran C, Riese SB, Jenett-Siems K, Gilabert-Oriol R, Melzig MF, Fuchs H. 2012. The toxin component of targeted anti-tumor toxins determines their efficacy increase by saponins. **Mol Oncol** 6: 323 332.
- Winter CA, Risley EA, Silber RH. 1968.
 Antiinflammatory activity of indomethacin and plasma corticosterone in rats. J
 Pharmacol Exp Ther 162: 196 201.
- Wu JF, Chen SB, Gao JC, Song HL, Wu LJ, Chen SL, Tu PF. 2008. Xanthone glycosides from herbs of *Polygala hongkongensis* Hemsl and their antioxidant activities. **J Asian Nat Prod Res** 10: 673 678.
- Yeşilada E. 1991. **Bitkilerde antienflamatuvar aktivite tayininde kullanılan yöntemler,** in: Başer KHC (Ed.), 9th Bitkisel İlaç Hammaddeleri Toplantısı, Eskişehir, Turkey.
- Yesilada E, Küpeli E. 2007. *Clematis vitalba* L. aerial part exhibits potent anti-inflammatory, antinociceptive and antipyretic effects. **J Ethnopharmacol** 110: 504 515.
- Zhang GG, Bai YP, Chen MF, Shi RZ, Jiang DJ, Fu QM, Tan GS, Li YJ. 2008. Asymmetric dimethylarginine induces TNF-alpha production via ROS/NF-kappaB dependent pathway in human monocytic cells and the inhibitory effect of reinioside C. **Vascul Pharmacol** 48: 115 121.
- Zhang Y, Takashina K, Saito H, Nishiyama N. 1994. Anti-aging effect of DX-9368 in senescence accelerated mouse. **Biol Pharm Bull** 17: 866 868.