

© 2017 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 16 (5): 455 - 462 ISSN 0717 7917 www.blacpma.usach.cl

Artículo Original | Original Article Chemical constituents and insecticidal activity of essential oil of *Paullinia pinnata* L (Sapindaceae)

[Compuestos químicos y actividad insecticida del aceite esencial de Paullinia pinnata L (Sapindaceae)]

Isiaka A. Ogunwande¹, Adesola A. Osunsami², Sunkanmi E. Sotubo² & Oladipupo A. Lawal¹

¹Natural Products Research Unit, Department of Chemistry, Faculty of Science, Lagos State University, Badagry Expressway Ojo, Ojo, Lagos, Nigeria
²Faculty of Science, Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria Contactos / Contacts: Isiaka A. OGUNWANDE - E-mail address: isiaka.ogunwande@lasu.edu.ng

Abstract: The chemical constituents and insecticidal activity of essential oil obtained by hydrodistillation of the leaves of *Paullinia pinnata* Linn (Sapindaceae) are being reported. The essential oil were analysed by using gas chromatography (GC) and gas chromatography coupled with mass spectrometry (GC-MS). Different concentrations (50, 100, 150, 200 and 250 mg/mL) of *P. pinnata* essential oil prepared separately and diluted in dimethyl sulfoxide (DMSO) were tested on the maize weevil, *Sitophilus zeamais*. The main constituents of the oil were pentadecanoic acid (17.9%), isoaromadendrene epoxide (11.5%) and wine lactone (11.2%). Other significant compounds of the essential oil were eremophilene (6.9%) and phytol (6.2%). The essential oil displayed 100% mortality (fumigant toxicity) against *S. zeamais* adults at tested concentration of 150 mg/mL with lethal concentrations (LC₅₀) of 51.87 mg/mL air. This is the first report on the chemical constituents and insecticidal activity of essential oil of *P. pinnata* and may be explore as a potential natural herbal plant for the control of insect pest.

Keywords: Paullinia pinnata, hydrodistillation, essential oils, terpenes, fatty acids, Sitophilus zeamais, insecticidal activity

Resumen: Se informan los componentes químicos y la actividad insecticida del aceite esencial obtenido por hidrodestilación de las hojas de *Paullinia pinnata* Linn (Sapindaceae). El aceite esencial se analizó mediante cromatografía de gases (GC) y cromatografía de gases acoplada con espectrometría de masas (GC-MS). Se ensayaron diferentes concentraciones (50, 100, 150, 200 y 250 mg/ml) de aceite esencial de *P. pinnata* preparado separadamente y diluido en dimetilsulfóxido (DMSO) en el gorgojo de maíz, *Sitophilus zeamais*. Los componentes principales del aceite fueron ácido pentadecanoico (17,9%), isoaromadendreno epóxido (11,5%) y vino lactona (11,2%). Otros compuestos significativos del aceite esencial fueron eremophilene (6,9%) y phytol (6,2%). El aceite esencial mostró una mortalidad del 100% (toxicidad fumigante) contra los adultos de *S. zeamais* a una concentración de 150 mg/ml con concentraciones letales (CL_{50}) de 51,87 mg/ml de aire. Este es el primer informe sobre la composición del aceite esencial de *P. pinnata* y su actividad insecticida. Puede ser explorado como una potencial planta herbácea natural para el control de la plaga de insectos.

Palabras clave: Paullinia pinnata, hidrodestilación, aceite esencial, terpenos, Sitophilus zeamais, actividad insecticida

Recibido | Received: September 29, 2016

Aceptado | Accepted: January 31, 2017

Aceptado en versión corregida | Accepted in revised form: February 1, 2017

Publicado en línea | Published online: September 30, 2017

Este artículo puede ser citado como / This article must be cited as: IA Ogunwande, AA Osunsami, SE Sotubo, OA Lawal. 2017. Chemical constituents and insecticidal activity of essential oil of *Paullinia pinnata* L (Sapindaceae). Bol Latinoam Caribe Plant Med Aromat 16 (5): 455 – 462.

Abbreviation List: v/w- volume by weight; GC Gas chromatography; GC-MS- Gas chromatography coupled to mass spectrometry; DMSO Dimethyl sulfoxide; LC₅₀ Lethal concentration.

INTRODUCTION

The present research report the chemical composition and insecticidal activity of essential oil obtained by hydrodistillation of the leaves of *Paullinia pinnata* L. (Sapindaceae) grown in Nigeria. This is part of an extensive research aimed at the characterization of the chemical composition and biological potentials of Nigerian medicinal plants and herbs (Lawal et al., 2106). Paullinia pinnata (syn. Cururu pinnata House) is popularly known as "Five finger" (English), "Yaatsa biyar" or "Goron dorina"(Hausa), "Kakansela" (Yoruba), "Enu-kakanshela" (Nupe) and "Okpanam" (Igbo) in Nigeria. The leaves of the plant *P. pinnata* were used by the natives in Nigeria for the treatment of wounds, fever and as insect repellant. In other part of Africa, the plant is reported to be used in the treatment of gonorrhea, wounds and microbial infections. The various extracts of *P. pinnata* were used to treat erectile dysfunction in mice (Zamble et al., 2006), possess antioxidative (Jimoh et al, 2007), antimicrobial (Annan et al., 2005; Ikhane et al., 2015), anticonvulsant (Maiha et al., 2009) and anxiolytic (Aliyu et al., 2014) activities. The wound healing, cytoprotective activity (Annan et al., 2010b), antioxidant (Annan et al., 2009a), anthelmintic (Spiegler et al., 2016), cardiotoxicity (Mariame et al., 2016), analgesic and anti-inflammatory (Ior et al., 2011), hepatoprotective (Lunga et al., 2015) and molluscicidal (Melendez et al., 2002) actions of P. pinnata have been documented.

Phytochemical examination of P. pinnata has led to the identification of paullinoside A and paullinimide A (Tsakala et al., 2006; Dongo et al., 2009), 2-(4-hydroxy-3,5-dimethoxyphenyl)-3-hydroxymethyl-2,3-dihydro-1,4,5-trioxaphenanthren-6-one that showed moderate algicidal activity against the alga Chlorella fusca, β-amyrin, 5-α-poriferastane-3 β ,6 α -diol, β -sitosterol, *l*-quebrachitol and β sitosterol glucopyranoside (Dongo et al., 2009). In addition, 1, 3', 4', 5, 5'-tetraacetoxy-3-oxo-dimethyl-2H-pyranylacetate flavones, 3,4'5-triacetoxy-6,7dioxoallylidenedimethylflavone, 4',5,7-triacetoxy-3diacetoxycyclohexadienyloxy flavones were also described previously (Elfaki et al., 2015). The 6a-(3'-methoxy-4'-hydroxybenzoyl)-luptriterpene. 20(29)-ene-3-one, was recently isolated from the

plant (Jackson et al., 2015). Friedelin a compound of P. pinnata displayed antibacterial action against strains of Staphylococcus aureus (Annan et al., 2009b) while 6β -(3'-methoxy-4'-hydroxybenzoyl)lup-20(29)-ene-one 6B-(3'-methoxy-4'and hydroxybenzoyl)-lup-20(29)-ene-ol showed a dosedependent increase in proliferation of 142BR cells, an indication of fibroblast stimulatory activity (Annan et al., 2010a). Lupeol-3-isovannilovl ester isolated from the plant demonstrated significant antibacterial activity on the tested strains (MIC 15.2-30.20 µg/mL) (Lasisi et al., 2015). An investigation of the leaves of P. pinnata resulted in the isolation of diosmetin-7-O-(2[°] '-O-β-D-apiofuranosyl-6[°] '-acetyl-β-D-glucopyranoside) and tricetin-4'-O-methyl-7-O-(2' '-O-β-Dapiofuranosvl -6' '-acetyl-β-d-glucopyranoside) (Abourashed et al., 1999). The antibacterial activity of (3β) -3-O-(2'-acetamido-2'-deoxy- β -D-glucopyranosyl) oleanolic acid and DPPH radical scavenging action of methylinositol have been reported (Lunga et al., 2014a). Other compounds present in P. pinnata 3β -(β -D-glucopyranosyloxy)stigmast-5-ene, were $(3\beta, 16\alpha$ -hydroxy)-3-O-(2'-acetamido-2'-deoxy- β -Dglucopyranosyl) echinocystic acid and (3*B*.)-3-O-[B-D-glucopyranosyl-(1"-3')-2'-acetamido-2'-deoxy-β-D-galactopyranosyl]oleanolic (Lunga et al., 2014b) and 2-O-methyl-L-chiro-inositol (Lunga et al., 2014b). Both (3β) -3-O-(2'-acetamido-2'-deoxy- β -Dglucopyranosyl) oleanolic acid and (3β) -3-O-[β -Dglucopyranosyl-(1"-3')-2'-acetamido-2'-deoxy-β-Dgalactopyranosyl]oleanolic acid displayed antibacterial and anti-yeast activities respectively (MIC 0.78-6.25 and 1.56-6.25 ug/mL respectively), while $(3\beta, 16\alpha$ -hydroxy)-3-O-(2'-acetamido-2'-deoxy- β -Dglucopyranosyl) echinocystic acid exhibited antidermatophytic activity (MIC 6.25-25 µg/mL) (Lunga et al., 2014b). Chemical study on the fruits of P. *pinnata* produced cyclopinnatol, paulliniester, cycloart-22(E)-ene-3 β ,25-diol, cycloartenol, ßsitosterol, betulonic acid and oleanonic acid (Awouafack et al., 2016). Cyclopinnatol exhibited significant antibacterial activity against Staphylococcus aureus, with MICs of 32 µg/mL (Awouafack et al., 2016).

The main fatty acids of *P. pinnata* (Fabianska *et al.*, 2004) were 9-octadecenoic acid (oleic acid; 30.8%), hexadecanoic acid (palmitic acid; 30.0%) and octadecanoic acid (stearic acid; 11.8%). Azelaic acid (a dicarboxylic acid) from *P. pinnata* showed antibacterial activity against tested organisms tested with MIC of 32-256 µg/mL (Annan *et al.*, 2009a).

Till moment there are no reports on the chemical constituents of essential oil and biological activity from *P. pinnata*. This paper reports for the first time the components of volatile of *P. pinnata* and its insecticidal activity.

MATERIALS AND METHOD

Plants collection

Mature leaves of *P. pinnata* were collected from Oke-Odo village in Ago-iwoye, Ogun-state, Nigeria, in May 2016. Botanical identification was carried out by Mr. SA Odewo and Mr. A Adeyemi at Herbarium, Forestry Research Institute of Nigeria (FRIN), Ibadan, where a voucher specimen FHI 110421 was deposited. The leaves were air-dried under laboratory shed for two weeks prior to hydrodistillation.

Hydrodistillation of the essential oils

Briefly, 500 g of each of the pulverized sample were carefully introduced into a 5 L flask and distilled water was added until it covers the sample completely. Hydrodistillation was carried out in an all glass Clevenger-type distillation unit for 3 h, according to established procedure (British Pharmacopoeia, 1980), at normal pressure. The volatile oils distilled over water and were collected separately in the receiver arm of the apparatus into a clean and previously weighed sample bottles. The oils were kept under refrigeration until the moment of analyses.

Gas chromatography (GC) analysis of essential oil

Gas chromatography analyses of the oils were carried out on a Hewlett Packard HP 6820 Gas Chromatograph equipped with a FID detector and HP-5MS column (60 m x 0.25 mm id), film thickness was 0.25 μ L and the split ratio was 1:25. The oven temperature was programmed from 50° C (after 2 min) to 240° C at 5° C/min and the final temperature was held for 10 min. Injection and detector temperatures were 200° C and 240° C, respectively. Hydrogen was the carrier gas. An aliquot (0.5 μ L of the diluted oil) was injected into the GC. Peaks were measured by electronic integration. A homologous series of n-alkanes were run under the same conditions for determination of retention indices.

Gas chromatography-mass spectrometry (GC-MS) analysis of essential oil

Gas chromatography mass spectrometer analyses of the oils were performed on a Hewlett Packard Gas Chromatography HP 6890 interfaced with Hewlett Packard 5973 mass spectrometer system equipped with a HP 5-MS capillary column (30 m x 0.25 mm id, film thickness 0.25 μ m). The oven temperature was programmed from 70-240° C at the rate of 5° C/min. The ion source was set at 240° C and electron ionization at 70 eV. Helium was used as the carrier gas at a flow rate of 1 mL/min. Scanning range was 35 to 425 amu. Diluted oil in n-hexane (1.0 μ L) was injected into the GC/MS.

Identification of the constituents

The identification of constituents was performed on the basis of retention indices (RI) determined by coinjection with reference to a homologous series of *n*alkanes, under identical experimental conditions. Further identification was performed by comparison of their mass spectra with those from NIST (NIST, 2011) and the home-made MS library built up from pure substances and components of known essential oils, as well as by comparison of their retention indices with literature (Adams, 2007).

Determination of insecticidal activity of the essential oil

Adult insects of mixed sex, 7-14 days old of Sitophilus zeamais reared on maize at $25 \pm 1^{\circ}$ C and $65 \pm 5\%$ relative humidity (R.H.) were used for the bioassay. The insecticidal activity was evaluated as described previously (Lawal et al., 2014; Lawal et al., 2016) using the maize weevil (Sitophilus zeamais). Different concentrations (50, 100, 150, 200 and 250 mg/mL) of P. pinnata essential oil prepared separately and diluted in DMSO were tested on S. *zeamais*. The appropriate concentrations were applied to filter paper (Whatman number 1, cut into 7 cm diameter) and immediately introduced into Petri dish and sealed. For the control group, the insects were placed in the Petri dish under the same conditions but without the essential oil. Each concentration and control was replicated three times. Insect mortality was determined by observing the recovery of immobilized insects in 12 h intervals up to 72 h. When no movements were observed, insects were considered dead.

Components of the essential oil of P. pinnata					
Compound ^a	RI ^b	RI °	Percent Composition		
Methyl salicylate	1187	1187	1.8		
7-Methy-3-methylene-6-octene-1-ol	1219	1221	0.4		
β-Cyclocitral	1225	1226	0.2		
α-Citral	1270	1273	0.3		
α-Cubebene	1351	1354	0.2		
Cyclosativene	1363	1363	0.7		
α-Copaene	1377	1374	1.9		
β-Elemene	1387	1391	3.9		
Longipinocarvone	1397	1398	2.4		
Caryophyllene ^d	1419	1417	2.8		
trans-a-Bergamotene	1435	1431	2.2		
α-Humulene	1454	1452	0.7		
Wine lactone	1457	1455	11.2		
β-Chamigrene	1480	1478	1.2		
Germacrene D	1483	1484	1.8		
(<i>E</i>)-β-Ionone	1484	1485	2.5		
Eremophilene	1500	1502	6.9		
α-Cuparene	1512	1511	1.4		
α-Calacorene	1545	1542	1.6		
β-Vatirenene	1560	1554	1.0		
(E)-Nerolidol	1573	1573	2.1		
Caryophyllene oxide	1581	1583	3.1		
Viridflorol	1583	1585	0.9		
trans, trans-Pseudoionone	1587	1589	2.0		
Isoaromadendrene epoxide	1592	1594	11.5		
9-Cedranone	1640	1638	1.1		
β-Eudesmol	1646	1648	3.1		
Longiverbenone	1680	1678	4.9		
Pentadecanoic acid	1873	1870	17.9		
Phytol	2125	2119	6.2		
Andrographolide ^e	2650	2634	1.8		
Total			98.7		
Monoterpene hydrocarbons			-		
Oxygenated monoterpenes			16.0		
Sesquiterpene hydrocarbons			25.3		
Oxygenated sesquiterpenes			31.1		
Diterpenes			8.0		
Fatty acids			17.9		
Others			0.4		

 Table 1

 Components of the essential oil of P. pinnata

 Others
 0.4

 ^a Elution order on HP-5MS column; ^b Retention indices on HP-5MS column; ^c Literature retention indices (see Experimental); ^d Correct isomer not identified; ^e Tentative identification

Statistical analysis

The mean and standard deviation of three experiments were determined. Statistical analysis of the differences between mean values obtained for experimental groups were calculated using Microsoft excel program, 2003. Data were subjected to one way analysis of variance (ANOVA). P values ≤ 0.05 were regarded as significant and P values ≤ 0.01 as very significant. Mortality percentages were calculated by the correction formula for natural mortality in the untreated control (Lawal *et al.*, 2014; Lawal *et al.*, 2016). The Lethal concentrations (LC₅₀) values for the insecticidal activity were calculated using probit analysis program, version 1.5

RESULTS AND DISCUSSION

Chemical constituents of the essential oil

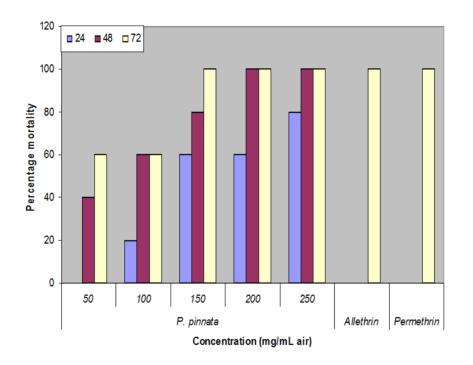
The percentage yield of the light yellow essential oil of P. pinnata was 0.08% (v/w) calculated on a dry weight basis. Table 1 indicated the percentages and identities of compounds present in the oil. A total of 31 compounds representing 98.7% of the total oil contents were identified. Monoterpene hydrocarbon compounds were conspicuously absent in the oil sample. The main classes of compounds identified in the oil were sesquiterpene hydrocarbons (25.3%), oxygen containing sesquiterpenes (42.3%) and fatty acids (17.9%). The main constituents of the essential oil were pentadecanoic acid (17.9%),isoaromadendrene epoxide (11.5%) and wine lactone (11.2%), with significant amounts of eremophilene (6.9%) and phytol (6.2%). Wine lactone which was previously isolated from different wine varieties (Guth, 1996) posses sweet smelling odour. The authors are not aware on any literature report on the chemical constituents of essential oil of P. pinnata, hence the present study may represent the first of its kind.

A comparison of literature data revealed that the essential oil of *Paullinia* species has not been the subject of literature discussion. The authors are aware of one report on volatile constituents of *P. cupana* (Benoni *et al.*, 1996). Except for identification of α copaene and caryophyllene, all other compounds such as limonene, estragole, anethole, carvacrol, 1,4dimethylbenzene, trimethylbenzene and 4-(dimethylpropyl)-phenol that were present in *P. cupana* were conspicuously absent in *P. pinnata*. However, the presence of fatty acids has been reported in other *Paullinia* plants. For example, *cis*-13-eicosenoic acid (paullinic acid; 44.4%) and *cis*-11-octadecenoic acid (*cis*-vaccenic acid; 19.8%) were present in *P. elegans* (Spitzer, 1995), while *cis*-11-octadecenoic (*cis*vaccenic acid; 30.4%), *cis*-11-eicosenoic acids (38.7%) and oleic acid (37.4%) were identified in *P. cupana* var. *sorbilis* (Avato *et al.*, 2003).

Insecticidal activity of the essential oil

Figure 1 (percentage mortality) and Table 2 (lethal concentrations, LC₅₀) displayed the fumigant insecticidal effects of essential oil of P. pinnata against the adults of S. zeamais. The results showed the essential oils to be concentration dependent with some inhibitory action on adults of S. zeamais after 72 h of treatment. At concentrations of 50 and 100 mg/mL, the essential oil of *P. pinnata* did not possess reasonable contact toxicity towards S. zeamais. However, at concentration of 150 mg/mL and after 48 h, the mortality rate was 80% while at 72 h the maximum mortality of 100% was achieved against S. zeamais. The same mortality of 100% was exhibited by at concentrations of 200 and 250 mg/mL at 48 and 72 h. From Table 2, the essential oil of P. pinnata after 24 h at all tested concentrations displayed weak lethal concentrations (LC₅₀) of 155.64 mg/mL air towards S. zeamais. Also, the fumigant toxicity of the essential improved significantly after 48 h with a total LC₅₀ value of 68.69 mg/mL air. Finally, the essential oil showed marked and improved fumigant toxicity against S. zeamais adults with 100% mortality at concentration (150)mg/mL). The lethal concentrations LC_{50} , was calculated to be 51.87 mg/mL air. A comparison of the result with standard and pure insecticidal compounds allethrin (LC₅₀ 7.40 mg/mL air) and permethrin (LC₅₀ 11.10 mg/mL air) revealed that the essential oil of P. pinnata to posses some toxicity against S. zeamais adults.

Although, literature information is devoid of insecticidal potential of *P. pinnata* essential oils however, the insecticidal effects of some essential oils from other plants against the adults of *S. zeamais* have been reported (Lawal *et al.*, 2014; Lawal *et al.*, 2016). Thus, this study shows *P. pinnata* essential oil (LC₅₀ ca. 50.00 mg/mL air) to have a noticeable insecticidal action on *S. zeamais* adults and may be explore as a potential natural herbal plant. The biological activity of an essential oil may depend on the effect of the major constituents or synergy between the major constituents and some minor compounds. The various compounds present in the


essential oil may have contributed to the observed insecticidal property. For example, phytol has shown insecticidal potential (Lawal *et al.*, 2014). Lactones with the *p*-menthane system, in addition to interesting odoriferous attributes exhibit valuable biological activities such as antifungal and antifeedant properties (Grudniewska *et al.*, 2015). Further chemical analysis aimed at the identification of the compound(s) is ongoing.

Insecticidal activity of <i>P. pinnata</i> essential oil against <i>S. zeamais</i> ^a					
Sample	LC ₅₀ (95 Cl) ^b				
	24 ^c	48	72		
P. pinnata	155.64 (95.89 – 249.28)	68.69 (13.17 – 105.36)	51.87 (0.00 - 92.33)		
Allethrin ^d	-	-	7.40 (2.01 – 14.65)		
Permethrin ^d	-	-	11.10 (6.03 – 23.19)		

Table 2

^a(n= 3, X \pm SEM; ^bLC₅₀ - Lethal concentrations with 50 % mortality; ^c-Time, h; ^d-Controls.

Figure 1 Percentage mortality of S. zeamais adults against different concentrations of P. pinnata essential oil after 72 h

CONCLUSION

In the present investigation of chemical constituents and insecticidal activity of essential oils from the leaves of *P. pinnata*, pentadecanoic acid, isoaromadendrene and wine lactone were found to be the major constituents. In addition, the essential oil demonstrated potential insecticidal activity and may be use for the control of insect pest. Due to the nonavailability of literature citation, the results could not compare with previous study on the essential oil of the plant.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Elena Falqué López, Química Analítica, Facultad de Ciencias, España, for the translation of the abstract of the manuscript into the Spanish language. Dr. IA Ogunwande and Dr. OA Lawal, are grateful to Tetfund, Nigeria, for the financial assistance, under the 3rd Batch Research Project Disbursement.

REFERENCES

- Adams RP. 2007. **Identification of essential oil components by gas chromatography/mass spectrometry,** Allured Publishing, Carol Stream, Illinois, USA.
- Abourashed EA, Toyang NJ, Choinski Jr J, Khan IA. 1999. Two new flavone glycosides from *Paulliniapinnata*. J Nat Prod 62: 1179 -1181.
- Aliyu M, Anuka JA, Yaro AH, Magaji MG. 2014. Evaluation of the anxiolytic effect of methanolic leaves extract of *Paullinia pinnata* Linn in mice. **Brit J Pharm Res** 4: 1638 - 1646.
- Annan K, Houghton PJ, Hylands PJ, Gibbons S. 2005. Antibacterial and resistant modifying activity of *Paullinia pinnata*. J Pharm Pharmacol 57: S74-S75.
- Annan K, Stephen G, Francis A. 2009a. Antibacterial and radical scavenging activity of fatty acids from *Paullinia pinnata* L. **Phcog Mag** 5: 119 - 123.
- Annan K, Adu F, Gbedema SY. 2009b. Friedelin: a bacterial resistance modulator from *Paullinia pinnata* L. J Sci Tech 29: 152 - 159.
- Annan K, Houghton PJ. 2010a. Two novel lupane triterpenoids from *Paullinia pinnata* L. with fibroblast stimulatory activity. J Pharm Pharmacol 62: 663 - 668.
- Annan K, Govindarajan R, **Kisseih E**. 2010b. Wound healing and cytoprotective actions of *Paullinia pinnata* L. **Pharmacog J** 2: 345 -350.
- Avato P, Pesante MA, Fanizzi FP, Santos CA. 2003. Seed oil composition of *Paullinia cupana* var.*sorbilis* (Mart.) Ducke. **Lipids** 38: 773 -780.
- Awouafack MD, Ito T, Tane P, Kodama T, Tanaka M, Asakawa Y, Morita H. 2016. A new cycloartane-typetriterpene and a new eicosanoic acid ester from fruits of *Paullinia pinnata* L. **Phytochem Lett** 15:220 - 224.
- British Pharmacopoeia. 1980. HM Stationary Office, London, UK.
- Benoni H, Dallakian P, Taraz K. 1996. Studies on the essential oil from guarana. Z Lebensm Unters Forsch 203: 95 - 98.

- Dongo E, Hussain H, Miemanang RS, Tazoo D, Schulz B, Krohn K. 2009. Chemical Constituents of *Klainedoxa gabonenses and Paullinia Pinnata*. **Rec Nat Prod** 3: 165-169.
- Elfaki BEH. 2015. Phyto- and physico-chemical properties of the flavonoids isolated from *Paullina pinnata* (Mistica), Senna sengueana (Sa'aba) and Ficus vasta Forssk (Teen). PhD Thesis, University of Khartoum, Sudán.
- Fabianska MJ. 2004. GC-MS investigation of distribution of fatty acids in selected Polish brown coals. Chemom Intell Lab Sys 72: 241 - 244.
- Ior LD, Uguru MO, Olotu PN, Ohemu TL, Ukpe A. 2011. Evaluation of analgesic and antiinflammatoryactivities and phytochemi-cal screening of the leaves extract of *Paullinia pinnata* (Sapindaceae). J Chem Pharm Res 3: 351 - 356.
- Ikhane D, Banwo K, Omotade O, Sanni A. 2015. Phytochemical and antimicrobial activities of methanolic extract of *Paullinia pinnata* leaves on some selected bacterial pathogens. J Herbs Spices Med Pl 21: 59 - 74.
- Jackson N, Annan K, Mensah AY, Ekuadzi E, Mensah ML, Habtemariam S. 2015. A novel triterpene from the roots of *Paullinia pinnata*: 6α-(3'-methoxy-4'-hydroxybenzoyl)lup-20(29)-ene-3-one. **Nat Prod Comm** 10: 563 - 564.
- Jimoh FO, Sofiya MO, Afolayan AJ. 2007. Antioxidant properties of the methanol extracts from the leaves of *Paullinia pinnata*. **J Med Food** 10: 707 - 711.
- Grudniewska A, Kłobucki M, Dancewicz K, Szczepanik M, Gabryś B, Wawrzeńczyk C. 2015. Synthesis and antifeedant activity of racemic and optically active hydroxy lactones with the *p*-menthane system. **PLoS One** 10: e0131028.
- Guth H. 1996. Determination of the configuration of wine lactone. **Helv Chim Acta** 79: 1559–1571.
- Lasisi AA, Ayinde BW, Adeleye AO, Onocha PA, Oladosu IA, Idowu PA. 2015. New triterpeneisovanniloyl and antibacterial activity of constituents from the roots of *Paullinia pinnata* Linn (Sapindaceae). J Saudi Chem Soc 19: 117 - 122.

- Lawal OA, Ogunwande IA, Salvador AF, Sanni AA, Opoku AR. 2014. *Pachira glabra* Pasq. essential oil chemical constituents, antimicrobial and insecticidal activities. **J Oleo Sci** 63: 629 - 635.
- Lawal OA, Sotubo SE, Osunsami AA, Eresanya OI, Ogunwade IA. 2016. Volatile constituents andinsecticidal activity of essential oil of *Margaritaria discoidea* (Baill.) GL. Webster. J Scient Res Rep 11: 1 - 6.
- Lunga PK, Tamokou JD, Fodouop SPC, Kuiate JR, Tchoumboue J, Gatsing D. 2014a. Antityphoid andradical scavenging properties of the methanol extracts and compounds from the aerial part of *Paullinia pinnata*. **SpringerPlus** 3: *302* - 303 doi:10.1186/2193-1801-3-302.
- Lunga PK, Qin XJ, Yang XW, Kuiate JR, Du ZZ, Gatsing D. 2014b. Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from *Paullinia pinnata*. **BMC Complem Alter Med** 10: 369 - 381.
- Lunga PK, Nkodo JMM, Tamokou JD, Kuiate JR, Gatsing D, Tchoumboue J. 2015. Posttreatmentevaluation of the side effects of methanol leaf extract from *Paullinia pinnata* (Linn.), an antityphoid plant. **Pharmacol** 6: 264 - 272.
- Maiha BB, Magaji MG, Yaro AH, Hamza AH, Magaji RA. 2009. Anticovulsant studies on *Cochlospermum tinctorium (Cochlospermaceae)* and *Paullinia pinnata (Sapindaceae)* extracts in laboratory animals. Niger J Pharm Sci 7: 102 - 108.
- Mariame E, Aboudoulatif D, Povi LE, Kodjo A, Kossi M, Essohana P. Eklu-Gadegkeku K,

Creppy E. 2016. Repeated toxicological study and cardiotoxicity of hydroalcoholic root extract of Paullinia pinnata L (Sapindaceae). J App Pharm Sci 6: 24 - 28.

- Melendez PA, Carriles VA. 2002. Molluscicidal activity of plants from Puerto Rico. Ann Trop Med Parasitol 96: 209 - 218.
- NIST. 2011. **Chemistry Web Book**. Data from NIST Standard Reference Database 69.
- Spiegler V, Liebau E, Peppler C, Raue K, Werne S, Strube C, Heckendorn F, Agyare C, Stark T, Hofmann T, Hensel A. 2016. A hydroalcoholic extract from *Paullinia pinnata* L. roots exerts anthelmintic activity against free-living and parasitic nematodes. **Planta Med** 82: 1173 - 1179.
- Spitzer V. 1995. GLC-MS analysis of the fatty acids of the seed oil, triglycerides, and cyanolipid of*Paulliania elegans* (Sapindaceae) – a rich source of *cis*-13-eicosenoic acid (paullinic acid). **J Sep Sci** 18: 413 - 416.
- Tsakala TM, Pen O, Miemanang RS, Krohn K, Hussain H, Dongo E. 2006. Paullinoside A and paullinomide A: a new cerebroside and a new ceramide from leaves of *Paullinia pinnata*. **Z Natur B** 61: 1123 - 1127.
- Zamble A, Carpentier M, Kandoussi A, Sahpaz S, Petrault O, Ouk T, Hennuyer N, Fruchart JC, Staels B, Bordet R, Duriez P, Bailleul F, Martin-Nizard F. 2006. *Paullini pinnata* extracts rich in polyphenols promote vascular relaxation via endothelium-dependent mechanisms. **J Cardiovasc Pharmacol** 47: 599 - 608.