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Abstract: Lichens are a symbiotic association between fungal and photoautotrophic algal partners that 

exhibit vast diversity in India with around 2,300 species recorded. In this research, a novel deep learning 

method known as LichenNet is proposed for the classification of lichens gathered from Western Ghats, 

India. Initially, the gathered images are denoised with Bright contrast dynamic histogram equalization 

(BCDC) filter to enhance the image quality and these are augmented to increase the images in the dataset. 

The Region of Interest (ROI) method is applied for generating the image patches by dividing the non-

overlapping segments. The Dilated LinkNet is integrated with local and global sampling to extract the 

fine features while the Pelican Optimization (PeO) algorithm selects the best features for classification. 

The proposed LichenNet achieves the classification accuracy of 99.26%. The proposed LichenNet 

progresses the overall accuracy of 2.19%, 4.29%, and 14.36% for XGBoost, SIFT and CNN respectively. 

 

Keywords: Lichen species; Deep learning; Patch extraction local and global features; Pelican 

optimization algorithm; Dilated LinkNet 

 

 

 

 

 

Resumen: Los líquenes son una asociación simbiótica entre hongos y algas fotoautótrofas que exhiben 

una gran diversidad en India, con alrededor de 2.300 especies registradas. En esta investigación se 

propone un nuevo método de aprendizaje profundo conocido como LichenNet para la clasificación de 

líquenes recolectados en los ghats occidentales de India. Inicialmente, se reduce el ruido en las imágenes 

recolectadas con un filtro de ecualización de histograma dinámico de contraste brillante (BCDC) para 

mejorar la calidad de la imagen y se aumentan para incrementar la cantidad de imágenes en el conjunto de 

datos. Se aplica el método de Región de Interés (ROI) para generar parches de imagen dividiendo los 

segmentos no superpuestos. El Dilated LinkNet se integra con muestreo local y global para extraer 

características finas, mientras que el algoritmo de Optimización Pelícano (PeO) selecciona las mejores 

características para la clasificación. El LichenNet propuesto alcanza una precisión de clasificación del 

99.26%. Además, el LichenNet propuesto mejora la precisión general en un 2.19%, 4.29% y 14.36% para 

XGBoost, SIFT y CNN respectivamente. 

 

Palabras clave: Especies de líquenes; Aprendizaje profundo; Extracción de parches; Características 

locales y globales; Algoritmo de optimización pelícano. 
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INTRODUCTION 

Lichen is a symbiotic organism that consists of two or 

more fungi and a photosynthetic partner, typically 

algae or cyanobacteria (Spribille et al., 2016). A wide 

variety of environments rely on them for soil creation, 

nutrient cycling, and biodiversity (Devaprakash et al., 

2024; Jung et al., 2024). It is crucial to accurately 

identify lichen species for ecological studies, 

conservation initiatives, and environmental health. 

Around 20,000 different types of lichens are readily 

found all over the world, and India is inhabited to over 

2300 species (Hrdina & Romportl, 2024). Lichens are 

vital components of many ecosystems and serve to 

monitor environmental conditions. Furthermore, these 

organisms are identified using microscopy techniques, 

a technique that requires expertise and is time-

consuming to observe the physical traits (Lie et al., 

2009). The colors of lichens range from bright yellows 

and greens to deep browns and grays. Pigments like 

anthocyanins, carotenoids, and chlorophyll can 

provide indicators about the identity of some species 

(Ovstedal & Smith, 2001). There are certain 

characteristics that are essential to adequately 

characterize a species. There are morphological traits, 

which provide physical descriptions; genetic markers, 

which reveal inheritance information; ecological 

preferences, which indicate the species' preferences 

for particular habitats and environments; and 

geographical distribution, which describes the species' 

natural habitats. These characteristics are specifically 

assessed using microscopy because this method 

provides unique and critical details that cannot be 

accurately captured or replicated by any other 

evaluation technique. Therefore, it is essential to use 

microscopy for these evaluations to ensure the 

precision and reliability of the observations. The 

identification of lichen species can be further 

improved by considering their ecological preferences 

and geographic distribution, since some species may 

only be found in particular areas (Kapoor et al., 2022; 

Haridas et al., 2023). This tool could become very 

important in the study area, the Indian Western Ghats, 

which is a biodiversity hotspot to many plant and 

animal species, including many lichen species. 

Nowadays, machine learning (ML) (Vinayaka 

& Krishnamurthy, 2010) and deep learning (DL) 

(Surendiran et al., 2022) techniques are significant 

procedures for diagnosing diverse ailments. 

Automated systems are created to identify and 

categorize different species of lichen based on images 

using deep learning networks (Dinesh et al., 2019). 

The development of robust deep learning models for 

lichen identification holds promise for citizen science 

initiatives, where enthusiasts and non-experts can 

contribute to biodiversity monitoring efforts by simply 

capturing and uploading images of lichens for 

automated species identification (Guedes et al., 2022; 

Dakshina et al., 2023). Identifying lichen species 

traditionally relies on labor-intensive morphological 

and chemical analyses, which are time-consuming and 

require expertise. DL models are adapted to the 

specific task of lichen identification will be employed 

to mitigate the need for vast amounts of labelled data 

and reduce training time (Jozdani et al., 2021; 

Prasanth & Muthukumaran, 2023). This study pays to 

the growing field of computer vision in ecology and 

biodiversity studies, demonstrating the potential of DL 

to streamline taxonomic identification processes and 

enhance our understanding of lichen diversity and 

distribution patterns. The key contributions of this 

paper are plotted as follows: 

 

• This paper introduces a novel Deep 

LichenNet for the identification of 

lichen main categories, aiming to 

develop an efficient and accurate 

system for species classification. 

• Lichen images are collected from the 

Western Ghats, and Generative 

Adversarial Network (GAN) 

architecture is used for image 

augmentation at different angles to 

expand the dataset, with noisy 

artifacts removed for training 

purposes. 

• The lichen image patches are 

generated using RoI by dividing the 

images into non-overlapping 

segments, followed by local feature 

extraction from each patch. 

• The Dilated LinkNet is integrated 

with local and global sampling 

modules to enhance feature extraction 

process for classifying various lichen 

species. 

• These features are then input into the 

PeO algorithm to select the most 

relevant ones for classifying lichen 



 

Govindasamy et al. Automatic classification and segmentation of Lichens 

 

                                     Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas/ 330 

taxa into fruticose, crustose, and 

foliose categories. 

 

Background study 

DL-based convolutional neural networks (CNNs) was 

established an extraordinary effectiveness in a variety 

of image categorization tasks because they learn from 

raw images automatically and extract characteristics 

automatically (Jozdani et al., 2021). In the Western 

Ghats, India, LinkNet was trained on large image 

datasets for lichen classification, which allows 

recognition and differentiation of Crustose (Peng et 

al., 2020) and foliicolous species of lichen (Rajaprabu 

& Ponmurugan, 2022; Subbaiyan et al., 2023). To 

create a variety of training samples, these models use 

data augmentation, which rotates and scales the source 

images. It is especially useful since lichens can appear 

differently depending on the environment. Moreover, 

hyperspectral and multispectral imaging data can be 

combined to enhance classification performance even 

further by providing rich spectral information that is 

frequently indicative of several lichen species 

(Granlund et al., 2018). Through the application of 

deep learning, conservation and research efforts in the 

Western Ghats, India, could be enhanced by 

streamlining the classification process and improving 

monitoring reliability (Erlandsson et al., 2022).  

Lichens in the Western Ghats are classified by 

a deep learning based LinkNet, an innovative 

approach to biodiversity research and conservation 

(Malik et al., 2022). The LinkNet architecture was 

used to identify lichen species in the Western Ghats 

for efficient classification of fruticose, crustose, and 

foliose categories (Vinayaka et al., 2016). LinkNet's 

encoder-decoder architecture and residual connection 

technology enable the feature extraction process with 

high precision for lichen image classification into 

different categories. Lichens are particularly useful for 

managing their intricate and varied visual properties 

(Li et al., 2021; Wang & Jia, 2024). LinkNet is used 

with the large collection of images of Western Ghats 

lichen to distinguish between several species based on 

their distinctive visual patterns and textures, where the 

use of hyperspectral and multispectral imaging data is 

another method that enhancing the accurateness and 

robustness of the model (Mishra et al., 2021). In the 

ecologically substantial region, LinkNet's lichen 

classification streamlines the identification process 

while offering a scalable solution for biodiversity 

monitoring (Guedes et al., 2022). 
 

Literature Review 

Many researchers have published studies identifying 

lichen types using digital image processing and 

classification methods in the past. Recent advances in 

ML and DL approaches can be found in a variety of 

literature works. 

Sandino et al. (2023), conducted validation in 

this field by obtaining ground and aerial image at 

ASPA-135, East Antarctica. The data collection stage 

included employing a data fusion method to merge 

Hyperspectral Imaging (HSI) and Multispectral 

Imaging (MSI) data, resulting in the acquisition of 

geo-referenced HSI images. XGBoost was used in the 

model training process, and four various combinations 

were explored to find the best match for the data. The 

fallouts of the research demonstrate that moss and 

lichens were successfully identified with an average 

accuracy of 95%. 

Richardson et al. (2023), evaluated ML 

models based on their capability to identify lichen 

coverage in Sentinel-2 imagery in Que´bec and 

Labrador, Canada. Lichen coverage maps, at 10-meter 

resolution, were created from 20 drone scans 

conducted between July 2019 and 2022, serving as the 

training data. The dense neural network attained the 

highest accuracy, with a mean absolute error of 5.2%, 

outperforming the convolutional neural network (5.3% 

error) and the random forest model (5.5% error). 

Lovitt et al. (2022), assessed the efficacy of a 

DPC approach in quantifying the ground cover 

percentage of glistening lichens. These lichens serve 

as a crucial food source for caribou during the 

Autumn and Winter seasons, especially when 

alternative food supplies are scarce. The methodology 

utilized licensed software. However, contrasting this 

licensed procedure, the Lichen Convolutional Neural 

Network (LiCNN) presents a more dependable and 

efficient solution. LiCNN, is a classification model 

effectively overcomes the constraints of traditional 

ground-truth data gathering approaches without 

requiring particular software. 

Presta et al. (2022), employed a ML 

methodology centered on patch classification to 

categorize lichen taxa based on images. Three distinct 

approaches for patch descriptor extraction: (i) 

manually crafted descriptors employing traditional 

feature extraction algorithms, (ii) CNN utilized as 
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feature extractors, and (iii) scattering methods that 

integrate nonlinear operators and wavelet 

convolutions. This model attained the highest 

accuracy of 0.89 by employing dense SIFT by 

leveraging on a lichen dataset. 

Galanty et al. (2021), introduced a 

classification tool for identifying Cladonia lichens 

based on deep convolutional neural networks. The 

study utilized eleven species of Cladonia for both 

training and testing the network, compiling a dataset 

of 1164 images sourced from numerous websites. The 

accuracy of the trained system attains 60.94% 

demonstrates promising performance for this nascent 

automatic categorization of lichen species. 

Preethaa et al. (2021), had discussed the 

growth of lichen elements on the facades of buildings 

within intelligent urban areas. After this discourse, it 

is evident that the Resnet-152 demonstrates 

proficiency in extracting color features from lichen 

images. The Unmanned Ariel Vehicle functions 

autonomously to gather these images from building 

surfaces. The extracted features undergo processing 

through the convolutional and max-pooling layers of 

the Resnet architecture. Subsequently, the input image 

was vectorized and categorized on contamination 

levels. 

Idrees et al. (2021), employed digitalized 

hematoxylin and eosin microscope slides to detect and 

measure mono-nuclear cells and granulocytes in 

inflammatory penetrates using a ML based artificial 

neural network. To aid educational endeavours, 24 

regions of interest were retrieved from cases of oral 

lichen planus (OLP), subsequently validated against a 

retrospective cohort comprising 130 cases. This study 

identified a threshold on the quantity of mono-nuclear 

cells that effectively distinguished OLP from other 

lichenoid conditions by achieving a 94.62% accuracy 

rate. 

Rehush et al. (2018), examined the probable 

of close-range terrestrial laser scanning (TLS) for the 

semi-automated detection of various Tree-Related 

Microstructures (TreMs) within dense TLS point 

clouds employing deep learning. Multiple deep 

learning networks were trained with rasterized 

Multiview Orthographic Projections (MVOPs) 

incorporating front, top, and side views of the 3D 

local point surroundings, to classify TreMs. The 

Random Forest (RF) model achieved a 70.0% overall 

accuracy confirming the efficacy of leveraging local 

geometric features for classifying six TreM groups. 

From these existing techniques, automatic 

classification and segmentation of lichens in the 

Western Ghats could be the limited availability of 

high-quality training data. The existing models may 

struggle to generalize well to unseen lichen specimens 

or environmental conditions, leading to reduced 

classification and segmentation accuracy. Moreover, 

variations in lighting conditions, image quality, and 

background clutter in field-collected lichen images 

can introduce challenges for automated classification 

and segmentation algorithms. This research work 

distinguishes itself by proposing the novel LichenNet 

for lichen classification, utilizing a LinkNet dilated 

convolutional layers instead of standard convolutional 

layers for efficient feature extraction. Moreover, we 

utilized local and global sampling modules to enhance 

feature extraction process in LinkNet architecture. 

Additionally, it employs the PeO algorithm for 

optimal feature selection, aiming to improve 

classification accuracy. The combination of these 

methods presents a unique approach in the domain. 

 

PROPOSED METHODOLOGY 

This section presents a novel Deep LichenNet was 

introduced for the classification of lichens from the 

gathered lichen dataset. Figure No. 1 shows the 

general procedure of the proposed method for lichen 

classification. 

 

Image denoising via BCDC filter 

The different lichen images were collected from the 

Western Ghats and the histograms equalization are 

employed to enhance the visibility of details in the 

images by rearranging intensity values, ensuring the 

full range of intensity values is utilized. Bright 

contrast dynamic histogram equalization (BCDC) 

filter employed to boost the contrast of an image by 

dynamically adjusting its histogram. The BCDC filter 

involve updating the pixel value of the processed pixel 

by calculating weights and considering nearby pixel 

values. The equation (1) illustrates the transformation 

function utilized to achieve contrast stretching for 

each pixel in the image. 

                                              (1) 
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Where R is the transformed output pixel value 

after applying the contrast stretching function, α is the 

input pixel value in the original image, and G 

indicates the maximum possible value for the pixel 

intensity. o,p,q represents the constants that determine 

the slope of the transformation function in different 

segments. u,v defines the threshold values that define 

the breakpoints between different linear segments in 

the transformation function, and i,j are the offset 

values added to the scaled pixel values in the second 

and third segments, respectively. These offsets adjust 

the output pixel values to achieve the desired contrast 

stretching effect.  

 
Figure No. 1 

Schematic depiction of the proposed Lichen classification model 

 

To improve an image while preserving its 

features, BCDC filter manages standard HE functions. 

BCDC filter divides the input histogram into multiple 

sub-histograms until ensuring that none of the new 

sub-histograms contains a dominant section. 

Smoothing towards the data in the histogram is 

achieved using a one-dimensional Gaussian filter. 

Equation (2) delineates the parameters of the Gaussian 

filter. 

 

                                                     (2) 

 

 

From equation (2)  is a vector with relation 

to the kernel's axis.  be the standard deviation 

function. The following equations (3) offer the set of 

variables for the dynamic equalization method. 

 

                                                             (3) 

 

From the equation (3),  represent the total 

amount of pixels in the segment is used to determine 

spanning.  are the two intensities at their most 

and least values from the th input sub-histogram. 
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                                         (4) 

 

                                                 (5) 

 

Equation (4) and (5) depict the computation of 

the  th output sub-histogram. It is necessary to acquire 

remapped values to ensure equilibrium in each sub-

histogram. Equation (6) signifies the outcomes of the 

sub-histogram. 

 

                                   (6) 

 

From the above equation (6),  represent 

the distinct level of intensity and  means the total 

number of pixels. The complete range of variable 

levels is distributed among sub-histograms according 

to the dynamic range of the input image of histogram 

data. This distribution of the contrast stretching range 

ensures effective enhancement of contrast in each 

region of the entire image, preventing small details in 

the input image from becoming dominant and fading 

away. Then, the distinct transformation function, 

based on the conventional method is generated for 

each sub-histogram, and the processed images are 

accordingly transformed into the output image.

GAN based data augmentation 

GAN structure is DL network that includes two 

components: generator and discriminator. The 

framework employs small batch training for both the 

discriminator D and generator G, thereby amplifying 

learning consistency and generalization efficiency.  

provides random noise as input and produces a 

synthetic image . Mathematically, the generator 

function is denoted as  . Where is the 

random noise vector sampled from a prior distribution, 

signifies the parameters of the generator. The 

discriminator D gets an image as input and output 

with a prospect signifying whether the input is real or 

synthetic. Mathematically, the discriminator function 

can be denoted as   

During training, the G and D are trained 

simultaneously in a minimax game scenario. G 

receives two inputs: the class label y and a random 

noise vector z, drawn from a Gaussian distribution. 

These inputs are separated and then utilized to 

generate new attack samples, denoted as G(z), which 

are produced through the training process. The 

objective is to minimize the following value function: 

 

 

 

                          (7) 

 

 

Where defines the true data 

distribution,  defines preceding distribution of the 

input noise,  signifies the expectation over the 

respective distributions. 

 

ROI based Patch generation 

The R-CNN network comprises three essential layers: 

the backbone, RPN, and ROI. Employing convolution 

techniques, conceptual features are extracted from 

input images. The convolution feature maps act as the 

starting point for both refining proposal results and 

acquiring segmentation in the RoI network, as well as 

providing foreground-containing proposals in the 

RPN. The ResNet50 framework is utilized in this 

process, generating a variation of feature-maps of 

various sizes through continuous stride operations. At 

the RPN phase, three types of anchors with diverse 

length-to-width proportions are accessible. Rather 

than utilizing multiscale anchors, a scale-specific map 

is generated with the foreground detection. The loss 

function of the RPN encompasses of regression and 

box classification losses. 

 

                                                     (8) 

 

Where signifies the feature-maps from the 

ith scale. The ROI layer takes as input the feature maps 

resulting from the backbone and the RPN proposal. 

This yields an array of potential candidate boxes likely 

to contain the desired object. IoU is leveraged to 

refine boundary boxes for increased accuracy. 

Subsequently, following corrections made by the RoI 

phase, improved feature-maps are obtained through 

RoIAlign and given to the mask-layer for object 

segmentation. Rather than employing a fully 

connected network, a convolutional network is 
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utilized for classification and regression tasks. The cumulative loss of the ROI layer is determined by, 

 

                                                                                              (9) 

 

Equations (8) and (9) demonstrate the 

intricacy of the RCNN's loss function at both the RPN 

and RoI layers. The loss function at the ROI layer 

encompasses three components classification loss 

 Regression loss and segmentation loss 

, indicating its complexity. The RoIAlign process 

will employ this technique to merge feature maps 

containing various scales into a unified scale. 

Additionally, the segmentation layer is responsible for 

segmenting the RoI. To generate a dense prediction 

distinct from the earlier classification and regression 

layers, R-CNN utilizes a convolutional network along 

with a segmentation loss function. 

                                                                                        (10) 

 

 

Where  signifies the loss of cross-

entropy, means the boundary loss,  signifies 

the networks’ cutloss, and 

 are the weights for 

aforesaid losses. The human eye tends to inaccurately 

estimate the cross-entropy loss ( ) maintained in 

image segmentation for multiple isolated pixels in 

classification problems, as expressed in equation (10). 

 

LG-Dilated LinkNet 

In this section, LG-Dilated LinkNet encompasses with 

Dilated convolution, local and global sampling to 

extract the efficient features. The LinkNet architecture 

comprises a sequence of encoder and decoder blocks 

that break down the image and reconstruct with few 

convolutional layers. Moreover, this architecture 

encompasses with sampling mechanisms for 

extracting the local and global (LoGo) features from 

the patches and denoised images. LinkNet operates as 

a semantic segmentation network to retain a good deal 

of the spatial features in the image. The architecture of 

Deep learning based LinkNet for Lichen classification 

is shown Figure No. 2. The technique entails joining 

the encoder module's shallow feature map directly to 

the similarly sized decoder module. By utilizing the 

precise position data from the shallow layer, this 

method reduces the need for extraneous calculations 

and parameters, which speeds up computation without 

sacrificing precision. 

The dilated rate  in dilated convolutional 

layer signifies sub-sampling the feature maps by a 

factor of  or inserting  zeros among the filter 

weights. Equation (11) gives the size of the resultant 

-dilated convolutional filter for a 1*1 dilated 

convolutional filter size , respectively.

   

 

 

                                                                (11) 

 

 

Let  represent the convolution in fth layer 

( ), and   demonstrate the filter 

dimension of every dilated layer at  and is expressed 

in below equation (12). 

 

 

                                                                                    (12) 

 

The LinkNet architecture differs significantly from neural architectures for pixel-wise operation. 
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Figure No. 2 

Architecture of Deep learning based LinkNet for Lichen classification 

 

Its uniqueness lies in the connection between 

the encoder and decoder. Spatial information loss 

during decoding, and recovering it from the encoder's 

output is challenging. In LinkNet, the encoder and 

decoder are linked through non-trainable pooling 

indices. This link recovers spatial information lost 

during encoding, crucial during the decoder's up 

sampling. In this architecture, the decoder uses fewer 

parameters, sharing knowledge acquired by the 

encoder.  

 

Local sampling 

The main objective of this algorithm is to extract 

particular local features from patch images input. The 

upscaled photos are guaranteed to preserve the finer 

details of the original images since the generator is 

trained on these local features. During image 

upscaling, local sampling is essential for learning and 

improving the details lost in the low-resolution input 

image. By prioritizing local features during training, 

the generator preserves and enhances these 

characteristics while upscaling images. 

 

Global sampling 

Denoised images are analyzed by extracting their 

global characteristics and looking at their composition 

and structure. As a result, the upscaled images display 

a global structure similar to the input images while 

also capturing local details. Global structures are 

derived by progressively downsampling the original 

images using convolutional layers until the result is 

the sum of global feature channels. The local function 

map  at measure  with width  and the 

global function , with length . During 

channel pairing, the global structures are familiar 

using a  unit with accessible weights. The limit 

values for the phase are as follows: filter dimension 

, the quantity of frequencies , and the total 

output networks  , respectively. The fused feature 

patches  and  with the equal size are merged and 
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the evaluate the patches are derived in equation (13).  

 

                                                                                                           (13) 

 

 

From the above equation,  signifies the super 

resolution image, and  represents the fused 

patches of the  and   respectively.  

 

Pelican Optimization algorithm 

The PeO algorithm is employed for feature selection, 

reducing the number of features in the images and 

selecting a subset to enhance classification accuracy. 

Inspired by the behavior and lifestyle of pelicans, the 

PeO algorithm selects the best features from the 

preceding network. In this algorithm, the number of 

pelicans signifies the retrieved features from LinkNet. 

The optimal features are symbolized by the pelican 

with the highest fitness after catching prey, while 

redundant features correspond to pelicans with the 

lowest fitness. The PeO algorithm uses two primary 

hunting tactics: moving towards the prey to generate 

features and skimming the water's surface to select 

features. 

 

Stage 1: Moving towards Prey  
During the early phase of the hunt, pelicans locate and 

approach their target. By modeling this technique, the 

search space can effectively explore different regions. In the 

Pelican Optimization (PO) method, the prey's position is 

arbitrarily selected inside the search space, a fundamental 

aspect of the approach. Equation (14) simulates the 

pelican's empirical method for identifying its prey. 

 

                                                                      (14) 

 

 

In the equation (14),  represents a random number 

selected between 1 and 2, denotes the target's 

location in the jth dimension,  stands for its 

objective function, and represents the new position 

of the ith pelican in the jth dimension during stage 1. 

The parameter , which can take on the value of 

either 1 or 2 arbitrarily, determines the degree of 

displacement. When  reaches 2, members may 

venture into unexplored areas. Consequently,  

significantly influences the PeO algorithm's ability to 

thoroughly explore and accurately scan the search 

space. If the pelican's new position fallouts in an 

enhancement in the objective function value, it is 

accepted by the PeO algorithm. This process is 

resulting in equation (15). 

 

                                                                                                                   (15) 

 

where  is the new position of the ith pelican and  

i is its objective function for stage 1. The Pelican 

Optimization (PeO) Algorithm works by representing 

lichen features (such as color, texture, and shape 

descriptors) as feature sets. Initialize a population of 

pelicans with random positions corresponding to 

subsets of these features. The fitness function, 

typically based on classification accuracy, guides 

optimization by evaluating each subset. Through 

iterative updates, pelicans adjust their positions, 

simulating hunting strategies to find the optimal 

feature subset that maximizes classification 

performance. The final output is the subset of features 

that offers the best classification accuracy for lichen 

species identification. 

 

Stage 2: Winging on the Water Surface 
In the second stage, pelicans propel fish above the water's 

surface using their wings before gathering them into their 

neck pouches. This strategy is employed by pelicans in 

targeted areas to enhance fish capture. To optimize 

outcomes, considerations must be made for factors 

influencing pelican posture. The predatory behavior of 

pelicans is quantitatively simulated using equation (16). 
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Fig. 3. Experimental results of the proposed model for Lichen classification 
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In the equation (16), where  represents a 

constant set at 0.2, denotes the 

neighborhood radius of , with 𝑡t being the iteration 

timer and  representing the maximum number of 

iterations. Furthermore,  stands for the anticipated 

new position of the 𝑖𝑡ℎ pelican in the 𝑗𝑡ℎ dimension 

during stage 2. Initially, a larger area surrounding each 

member is considered in the first iteration due to the 

higher value of this coefficient. As the replication 

process proceeds, the coefficients for each 

member decrease, leading to smaller neighborhood 

radii. Equation (17), subject to efficient modification, 

also governs the calculation of a new pelican position 

at this stage. 

 

                                                                                                              (17) 

In stage 2,  represents the anticipated 

objective function, while  denotes the new location 

of the ith pelican. Randomly chosen features are 

incorporated after multiplying the inputs by the 

feature vectors. Subsequently, the PeO algorithm 

undergoes updates influenced by the Moving and 

Winging operations' features. This refined PeO 

algorithm can be placed within a fully connected (FC) 

layer to enhance classification. This approach is 

commonly employed to identify crucial traits and 

eliminate those irrelevant or redundant to lichen type 

classification. 

 

RESULTS AND DISCUSSION 

This section used Matlab-2020b to implement the 

experimental results and assess the efficacy of the 

proposed Deep LichenNet. In this work, we have 

collected different lichen images from the Western 

ghats are the input to the proposed LichenNet for 

detecting the lichen categories. The Western Ghats are 

a mountain range located along the western coast of 

India. The gathered species extend from the state of 

Gujarat in the north, running through Maharashtra, 

Goa, Karnataka, and Kerala, ending in Tamil Nadu in 

the south. This biodiversity hotspot is recognized for 

its rich variety of flora and fauna. The test sample was 

evaluated through the use of recall, precision, F1 

score, accuracy, and specificity. The comparison 

provides a detailed description and analysis of the 

total accuracy rate besides the competence of the 

proposed Deep LichenNet. Additionally, the proposed 

deep learning model is contrasted with traditional 

deep learning models to prove the efficiency in the 

classification. 

The Figure No. 3 shown the portrays the 

fallouts of proposed Deep LichenNet with the sample 

images gathered from Western Ghats. The gathered 

images are collected and pre-processed using the 

combination of filtering techniques to remove the 

noisy artefacts and improve the image quality is 

presented in row-1. To increase the training dataset 

different augmentation techniques are used in different 

angles with the GAN structure is displayed in row-3. 

Afterwards, these images are fed into the patch 

generation phase for generating different patches is 

shown in row-4. The features are retrieved from the 

generated image patches to recognize different lichen 

types such as fruticose, crustose and foliose. 

 

Performance scrutiny 

The effectiveness of the proposed LichenNet was 

evaluated with the network metrics viz., F1-score (f1), 

precision (pre), sensitivity (sen), accuracy (acc), and 

specificity (spe). The data is splitted into two subsets: 

80% for training and 20% for testing. The subsequent 

metrics are employed to estimate the competence of 

the proposed system 

 

                                                                                                        (18) 

 

                                                                                                       (19) 

 

                                                                                                      (20) 

 

                                                                                                       (21) 
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here True Positives (TP) are cases of the observed 

class that were correctly classified, False Positives 

(FP) are cases in other classes that are misclassified, 

True Negatives (TN) are the instances of the 

remaining classes that are correctly classified, In the 

class under observation, False Negatives (FN) 

represents the number of instances that were 

misclassified and N is the total number of images. 

 

Table No. 1 

Efficacy evaluation of the proposed LichenNet for classification 

Classes Accuracy Precision Sensitivity Specificity F1 score 

Fruticose 99.2 97.2 97.4 96.5 98.4 

Crustose 99.3 98.3 96.7 97.2 97.1 

Foliose 99.1 96.4 96.5 97.5 96.2 

 
 

 

 

The effectiveness reached by the proposed 

model for classifying various lichen classes of lichen 

such as Fruticose, Crustose, and Foliose is exhibited 

in Table No. 1. The proposed LichenNet achieves the 

accuracy of 99.26% for gathered images from the 

Western Ghats. Furthermore, the proposed LichenNet 

acquires the overall pre, spec, sen, and f1 of 97.03%, 

96.86%, 97.06% and 97.23% respectively. The visual 

performance analysis of the proposed LichenNet is 

exposed in Figure No. 4. 

 

 
 

Figure No. 4 

Visual competence evaluation of the proposed LichenNet 

 

 

The proposed LinkNet was trained during 50 

epochs with exactly the same configuration to attain 

best results. The graphs for the training and validation 

sets of the collected datasets are displayed in Figure 

No. 6, where the three networks that are tested and 

plotted along with their accuracy and loss functions. 
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Figure No. 6 

Loss curve of the proposed LinkNet 

 

 
 

Figure No. 6 

Loss curve of the proposed LinkNet 
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Figure No. 7 

Confusion matrix for lichen classification 

 

 

 

 

Figure No. 7 shows the 3x3 confusion matrix 

for classifying lichen types that representing the actual 

and predicted classes, respectively. Each cell counts 

the number of cases detected into a specific 

combination of classes. In this context, it could 

represent three different types of lichen (e.g., foliose, 

fruticose, crustose) with an overall accuracy of 0.9927 

and loss of 0.0073. The diagonal elements specify 

precise categorization, while off-diagonal elements 

signify mis categorization. From this Figure No. 7, the 

efficiency of the proposed LichenNet attains best 

classification results. 

 

Comparative scrutiny 

The performance of each neural network was 

measured for validating the efficacy of the proposed 

approach in achieving highly accurate outcomes. 

Comparative evaluations were carried out between the 

proposed LinkNet and several other DL classifiers like 

DenseNet, AlexNet, and GoogleNet. Various 

parameters, including acc, pre, spec, sen, and F1 were 

employed to gauge efficiency across each network. 

Notably, the accuracy of the proposed LinkNet 

reached an impressive 99.26%, surpassing that of 

conventional deep learning networks. 
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Table No. 2 

Comparison between the traditional DL networks for classification 

Networks Accuracy Precision Sensitivity Specificity F1 score 

AlexNet 90.09 93.27 89.18 93.58 93.25 

DenseNet 91.21 89.18 92.87 89.25 89.37 

GoogleNet 89.90 92.76 90.39 92.78 91.91 

LinkNet 99.26 97.03 97.06 96.86 97.23 

  
From Table No. 2 we can compare several DL 

structures on the basis of their efficiency measures for 

determining the proper proportion of accuracy in 

classification. In comparison with the LinkNet, 

conventional networks performed worse than LinkNet. 

The proposed LinkNet progresses the overall accuracy 

range by 9.24%, 8.11%, and 9.42% better than 

AlexNet, DenseNet and GoogleNet respectively.

 

Table No. 3 

Accuracy comparison of the proposed model with the existing models 

Authors Method Accuracy 

Sandino et al., 2023 XGBoost 97.08% 

Presta et al., 2022 SIFT 95.0% 

Galanty et al., 2021 CNN 85.0% 

Proposed Deep Lichen Net 99.26% 

  
Table No. 3 illustrates the experimental 

duration of a sample input signal was calculated from 

the gathered dataset in order to verify the precision of 

different approaches. In order to compare earlier 

methods, particular performance indicators were used 

to ensure classification accuracy. The proposed 

LichenNet progresses the overall accuracy of 2.19%, 

4.29%, and 14.36% for XGBoost (Mishra et al., 

2021), SIFT (Richardson et al., 2023), and CNN 

(Lovitt et al., 2022), respectively. Though, the prior 

methods did not attain good accuracy level compared 

to the proposed LichenNet.  

 

CONCLUSION 

This paper presents a novel Deep Lichen Net for 

classifying different lichen types in the Western Ghats 

using a gathered lichen dataset. The approach involves 

deep learning-based ROI patch extraction, dividing 

images into non-overlapping patches for feature 

extraction. LinkNet distinguishes between lichen 

species based on LoGo features, which are then 

optimized using the PeO algorithm for accurate 

classification into fruticose, crustose, and foliose taxa. 

The proposed LinkNet increases the overall accuracy 

range by 9.24%, 8.11%, and 9.42% better than 

AlexNet, DenseNet and GoogleNet respectively. 

Moreover, the proposed Deep LichenNet increases the 

overall accuracy of 2.19%, 4.29%, 14.36% and 6.88% 

for XGBoost, SIFT, and CNN respectively. The 

evaluation results establish the efficiency of the 

proposed technique in accurately identifying lichen 

species, achieving high classification accuracy rates. 

This approach offers a promising field for expediting 

lichen identification processes, facilitating ecological 

research, conservation efforts, and environmental 

monitoring. Future work could explore the integration 

of multispectral imaging techniques to enhance lichen 

classification accuracy and extend the application of 

the proposed LichenNet framework to diverse 

geographical regions for broader ecological insights. 
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