

BOLETIN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS © / ISSN 0717 7917 / www.blacpma.ms-editions.cl

Revisión / Review

A revision of Traditional Chinese Medicine in the treatment of polycystic ovary syndrome: Utilizing data mining techniques for disease prevention and management

[Revisión de la medicina tradicional china en el tratamiento del síndrome de ovario poliquístico: utilización de técnicas de minería de datos para la prevención y manejo de la enfermedad]

Dan Xu^{1,#}, Wan-Su Chen^{1,#}, Dan Jia¹, Xiao-Le Yang¹, Xue-Ting Shao¹, Guo-Rong Jiang², Yao Zhu³ & Qing-Xia Song¹

¹Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China ²Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China ³First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China [#]These authors contributed equally to this study

Reviewed by: Andres Herrera University of Michigan USA

Pedro Orihuela Universidad de Santiago de Chile Chile

> Correspondence: Yao ZHU zhuyaozhuyaozy@163.com

Qing-Xia SONG songqingxiasqx7710@126.com

Section Biological activity

Received: 25 September 2024 Accepted: 31 December 2024 Accepted corrected: 31 May 2025 Published: 30 September 2025

Citation:

Xu D, Chen WS, Jia D, Yang XL, Shao XT, Jiang GR, Zhu Y, Song QX. A revision of Traditional Chinese Medicine in the treatment of polycystic ovary syndrome: Utilizing data mining techniques for disease prevention and management **Bol Latinoam Caribe Plant Med Aromat** 24 (5): 712 - 731 (2025) https://doi.org/10.37360/blacpma.25.24.5.50 Abstract: This study employed data mining to analyze clinical cases of polycystic ovary syndrome (PCOS), PCOS with insulin resistance (PCOS-IR), and insulin resistance (IR), examining their correlations and pathological evolution. A standardized repository was established by searching PubMed and additional medical databases for clinical cases of PCOS, PCOS-IR, and IR. Data mining identified 1,427 PCOS cases (364 Chinese herbal medicines; high-frequency drugs: Radix Angelicae Sinensis; key pairs: Fructus Rubi \rightarrow Semen Cuscutae; 5 prescription clusters), 109 PCOS-IR cases (156 Chinese herbal medicines; high-frequency drugs: Poria; key pairs: Rhizoma Chuanxiong \rightarrow Radix Angelicae Sinensis; 4 prescription clusters), and 68 IR cases (125 Chinese herbal medicines; high-frequency drugs: Poria; key pairs: Radix Bupleuri \rightarrow Poria; 4 prescription clusters). The analysis also identified "Phlegm (dampness)" as a shared pathological factor across all conditions, crucially driving PCOS progression. These results suggested the distinct herbal patterns and clusters revealed both therapeutic commonalities and condition-specific strategies.

Keywords: Data mining; Insulin resistance; Phlegm-dampness; Polycystic ovary syndrome; Preventing the development of existing diseases

Resumen: Este estudio empleó minería de datos para analizar casos clínicos de síndrome de ovario poliquístico (SOP), SOP con resistencia a la insulina (SOP-RI) y resistencia a la insulina (RI), examinando sus correlaciones y evolución patológica. Se estableció un repositorio estandarizado mediante la búsqueda en PubMed y otras bases de datos médicas de casos clínicos de SOP, SOP-RI y RI. La minería de datos identificó 1,427 casos de SOP (364 medicamentos herbales chinos; fármacos de alta frecuencia: Radix Angelicae Sinensis; pares clave: Fructus Rubi \rightarrow Semen Cuscutae; 5 agrupaciones de prescripciones), 109 casos de SOP-RI (156 medicamentos herbales chinos; fármacos de alta frecuencia: Poria; pares clave: Rhizoma Chuanxiong \rightarrow Radix Angelicae Sinensis; 4 agrupaciones de prescripciones) y 68 casos de RI (125 medicamentos herbales chinos; fármacos de alta frecuencia: Radix Bupleuri \rightarrow Poria; 4 agrupaciones de prescripciones). El análisis también identificó el "Flema (humedad)" como un factor patológico común en todas las condiciones, siendo crucial en la progresión del SOP. Estos resultados sugieren que los patrones y agrupaciones herbales revelan tanto similitudes terapéuticas como estrategias específicas para cada condición.

Palabras clave: Minería de datos; Resistencia a la insulina; Flema-humedad; Síndrome de ovario poliquístico; Prevención del desarrollo de enfermedades existentes

Xu et al.

LIST OF ABBREVIATIONS

polycystic ovary syndrome (PCOS) polycystic ovary syndrome concomitant with insulin resistance (PCOS-IR) insulin resistance (IR) Traditional Chinese medicine (TCM) China National Knowledge Infrastructure (CNKI) China Biology Medicine (CBM)

INTRODUCTION

Polycystic ovary syndrome (PCOS) is one of the most prevalent reproductive and metabolic disorders globally, with reported prevalence ranging between 8% to 13% (Lim et al., 2019). Its profound impact on menstrual disorders and female infertility underscores its significance as a compelling area of research both domestically and internationally. Studies that have been previously conducted indicate a notable overlap of 44% to 70% between PCOS and insulin resistance (IR), a central aspect in the pathophysiology of patients with PCOS (Diamanti-Kandarakis & Dunaif, 2012). IR increases androgen secretion among patients with PCOS, hinders follicular development, and increases the risk of diverse metabolic complications including endometrial diseases. abnormalities in glucose and lipid metabolism, fatty liver, and long-term cardiovascular disease (Nestler et al., 1998; Munir et al., 2004; Dumesic et al., 2007; Brothers et al., 2010; Qi et al., 2018; Ali & Guidozzi, 2020). Therefore, timely recognition, assessment, and management of IR are essential in delaying the progression of PCOS and reducing the risk of longterm metabolic complications. Currently, metformin is primarily used in Western medicine to treat PCOS-IR by increasing the translocation of the glucose transporters GLUT1 and GLUT4 to cell membranes, activating the AMPK signaling pathway, and reconstructing the role of endogenous insulinsensitizing molecules, such as adiponectin, in endometrial tissues under pathological conditions; however, its efficacy is tempered by prevalent gastrointestinal side effects, along with concerns regarding its long-term impact on offspring and postnatal development, limiting its clinical use to a certain extent due to the lack of evidence-based medical data on its long-term effects on offspring and postnatal development (Guo et al., 2016; Anonimous, 2018; Given et al., 2018; Hanem et al., 2018; Liu et al., 2020; Zhao et al., 2023). Traditional Chinese medicine (TCM) emerges as a promising avenue for PCOS management, supported by several studies demonstrating its ability to modulate reproductive endocrine function, enhance IR, restore ovarian homeostasis, facilitate ovulation, and enhance fertility prospects. Also, TCM interventions are characterized by their safety profile and limited adverse effects (Ding et al., 2014; Deng et al., 2019; Wang & Liang, 2019; Xu & Zhou, 2020). This study constitutes a systematic analysis of clinical cases of PCOS, PCOS-IR, and IR as treated by distinguished TCM practitioners in contemporary times. Through meticulous examination of their treatment protocols. the objective of this study was to assess the correlation, differences, and evolution among these conditions. Such research endeavors are significant in enhancing the understanding of the disease, refining TCM treatment, and interpreting the essence of disease prevention and intercepting its further progress.

MATERIAL AND METHODS

Data and methods

Data sources

Computer searches were conducted on five major medical databases: China National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM) disc, Wanfang Database, VIP Chinese Scientific and Technical Journal Database (VIP), and PubMed. A combination of subject term search and basic search methods were used, with the search time frame set from the inception of the databases to January 31, 2020.

The Chinese search formula for PCOS was: (Title: "polycystic ovary syndrome" or "PCOS") AND (Title: "case study" or "experience" or "prescription" or "case" or "treatment" or "case"); the English search formula was: (polycystic ovary syndrome MeSH Terms]) AND (Chinese phytotherapy [Text Word]). A total of 857 relevant documents were retrieved. Following removal of duplicates, initial screening, rescreening, and supplementation, 330 articles met the criteria and were ultimately included.

The Chinese search formula for PCOS-IR was: (Title: "polycystic ovary syndrome" or "PCOS") AND (Title: "insulin resistance" or "hyperinsulinemia") AND (Text: "case study" or "experience" or "prescription" "case" or or "treatment" or "case"); the English search formula was: (polycystic ovary syndrome [MeSH Terms]) AND ((insulin resistance [MeSH Terms]) OR (hyperinsulinemia [MeSH Terms])) AND (Chinese phytotherapy [Text Word]). A total of 122 articles were finally retrieved. Following removal of duplicates, initial screening, rescreening, and supplementation, 28 articles met the criteria and were

The Chinese search formula for IR was: (Title: "Insulin resistance" or "Hyperinsulinemia" or "IR") AND (Title: "case study" or "experience" or "prescription" or "case" or "treatment" or "case"); the English search formula was: ((insulin resistance [MeSH Terms]) OR (hyperinsulinemia [MeSH Terms])) AND (Chinese phytotherapy [Text Word]). A total of 106 articles were retrieved. After removing duplicate, initial screening, rescreening, and supplementation, 17 articles met the criteria and were finally included. The specific retrieval and screening process is illustrated in Supplementary Figure No. 1.

Inclusion criteria

(1) Chinese medicine case studies, case reports, academic experiences, medical theories, and medical discourse were listed in the test case. (2) Western medicine diagnoses in the cases included PCOS, IR, or hyperinsulinemia, and both of the above-mentioned diseases. (3) Cases contained symptoms, tongue and pulse analysis, prescriptions, and the composition of Chinese medicine used in the initial diagnosis. (4) If a follow-up medical case revealed changes in symptoms, evidence type, treatment methods, prescriptions, or medication from the previous case, it was recorded as an independent medical case.

Exclusion criteria

(1) Literature reviews, case reports, animal experiments, and clinical studies were excluded. (2) Cases lacking essential information such as symptoms, tongue and pulse analysis, prescriptions, and so on, were excluded. (3) Cases using acupuncture, auricular acupuncture points, dietary therapies, and poultices alone were omitted. (4) Duplicate cases were identified and only the first published instance was retained. (5) Abstracts of conference papers inaccessible for full-text retrieval were excluded.

Database construction

Case screening adhered rigorously to the predefined inclusion and exclusion criteria. Relevant prescription details from the selected cases were systematically collected, categorized, and entered into Microsoft Excel 2016 software to construct the database encompassing PCOS, PCOS-IR, and IR medical cases. To uphold data precision, two individuals independently undertook data entry tasks, with the results subsequently subjected to cross-validation upon completion.

Data normalization

Normalized Chinese medicine terminology adhered to the Chinese Medicine Clinical Case Data Mining Research Data Normalization Standard for practical implementation (Zhongyi Linchuang Shuju Wajue Yanjin Shuju Guifanhua Biaozhun, 2019). Drug standardization was conducted in accordance with the 2015 edition of the Pharmacopoeia of the People's Republic of China and the Chinese Pharmacopoeia (Gao, 2015; Zhonghua Renmin Gongheguo Yaodian, 2015). Examples of this normalization process include: (1) Assigning Chinese medicine aliases and common names, such as "Qi Zi" classified as "Gou Qi Zi (Fructus Lycii)", and "Xian Ling Pi" as "Yin Yang Huo (Epimedium Herb)"; (2) Clarifying Chinese medicine concoction or origin names, for instance, "Quan Dang Gui" and "Dang Gui Shen" categorized as "Dang Gui (Radix Angelicae Sinensis)", "Chuan Niu Xi" as "Radix Achyranthis Bidentatae", and so forth. The data normalization procedure endeavored to uphold the original intentions of the medical practitioners.

Data analysis platform

The data underwent analysis using the data association analysis platform (XMiner V1.0) within the data processing framework of the Medcase V3.8 data record mining system (Yang et al., 2016; Su et al., 2019). Frequency statistics methodology was used to analyze the frequency of drugs within the Subsequently, reasonable support cases. and confidence levels were established based on the number of formulas encompassed in the cases and pertinent pre-determined parameters. The Apriori algorithm was used to derive association rules, thereby facilitating an examination of dispensing patterns and identification of core drugs within the formulations. Also, clustering analysis case methodology was used to reveal grouping patterns, thereby deriving core combinations and new prescriptions.

RESULTS

General information

The PCOS database comprised 330 articles, encompassing 190 medical practitioners and involving 382 patients, totaling 1,427 consultations. It contained 364 types of TCMs with a cumulative frequency of 21,083 administrations. The PCOS-IR database included 28 articles, involving 22 medical practitioners and 30 patients, which amounted to 109 consultations. It comprised 156 types of TCMs with a cumulative frequency of 1,275 administrations. Finally, the IR database consisted of 17 articles, with 17 medical practitioners and 22 patients, resulting in 68 consultations. It incorporated 125 types of

traditional Chinese medicine, administered cumulatively 852 times (Table No. 1).

Table No. 1								
	Database Information							
Name of the Medical Case Database	Literature: Total number of	Medical Practitioners Total Number of	Patient population and number of	Number of Consultations	Chinese Medicine Quantity	Chinese Medicine Total Frequency		
	cases.	Cases	cases		Quantity			
PCOS Database	330	190	382	1427	364	21083		
PCOS-IR Database	28	22	30	109	156	1275		
IR Database	17	17	22	68	125	852		

Frequency statistics

The TCMs were ranked based on their frequency of use, and the top 6 medicines with the highest frequency of use in each database were as follows: In the PCOS database: *Radix Angelicae Sinensis, Semen Cuscutae, Poria, Rhizoma Cyperi, Rhizoma Atractylodis Macrocephalae,* and *Radix Salviae Miltiorrhizae.* Notably, *Radix Angelicae Sinensis* exhibited the highest frequency of use, accounting for 56.06% of administrations. In the PCOS-IR database: Poria, Radix Angelicae Sinensis, Rhizoma Cyperi, Semen Cuscutae, Rhizoma Atractylodis Macrocephalae, and Rhizoma Atractylodis. Poria emerged as the most frequently used medicine, constituting 52.34% of administrations.

In the IR database: *Poria, Radix Codonopsis, Rhizoma Atractylodis, Radix Glycyrrhizae, Radix Bupleuri,* and *Rhizoma Coptidis. Poria* was again the most commonly employed medicine, accounting for 53.19% of administrations (Table No. 2).

				-	inequency	-				
	PCOS Database			PC	COS-IR Datab	ase		IR Database		
Sequence	Drugs	Frequency	Frequency (%)	Drugs	Frequency	Frequency (%)	Drugs	Frequency	Frequency (%)	
1	Radix Angelicae Sinensis	800	56.06	Poria	56	52.34	Poria	25	53.19	
2	Semen Cuscutae	710	49.75	Radix Angelicae Sinensis	46	42.99	Radix Codo- nopsis	21	44.68	
3	Poria	659	46.18	Rhizoma Cyperi	44	41.12	Rhizoma Atracty- lodis	21	44.68	
4	Rhizoma Cyperi	619	43.38	Semen Cuscutae	40	37.38	Radix Glycy- rrhizae	19	40.43	
5	Rhizoma Atractylodis Macrocephalae	554	38.82	Rhizoma Atracty- lodis Macroce- phalae	40	37.38	Radix Bupleuri	18	38.30	

Table No. 2Distribution of high frequency drugs

6	Radix Salviae Miltiorrhizae	550	38.54	Rhizoma Atracty- lodis	38	35.51	Rhizoma Coptidis	18	38.30
7	Rhizoma Chuanxiong	513	35.95	Radix Astragali	36	33.64	Radix Astragali	16	34.04
8	Radix Glycyrrhizae	508	35.60	Radix Salviae Miltio- rrhizae	33	30.84	Radix Paeoniae Rubra	16	34.04
	Radix			Pericar-			Radix		
9	Rehmanniae Preparata	496	34.76	pium Citri Reticulatae	32	29.91	Angelicae Sinensis	15	31.91
10	Radix Paeoniae Alba	478	33.50	Rhizoma Dioscoreae	30	28.04	Cortex Moutan	14	29.79
11	Radix Achyranthis Bidentatae	440	30.83	Herba Epimedii	30	28.04	Radix Rehma- nniae	13	27.66
12	Herba Epimedii	437	30.62	Radix Glycy- rrhizae	26	24.30	Herba Epimedii	13	27.66
13	Pericarpium Citri Reticulatae	413	28.94	Radix Codo- nopsis	26	24.30	Rhizoma Atracty- lodis Macro- cephalae	13	27.66
14	Rhizoma Dioscoreae	407	28.52	Herba Taxilli	25	23.36	Radix Puerariae	13	27.66
15	Radix Dipsaci	393	27.54	Rhizoma Pinelliae	24	22.43	Radix Scutellariae	13	27.66
16	Fructus Corni	363	25.44	Radix Rehma- nniae Preparata	24	22.43	Semen Cuscutae	12	25.53
17	Herba Leonuri	358	25.09	Radix Paeoniae Alba	24	22.43	Pericarpium Citri Reticulatae	12	25.53
18	Rhizoma Atractylodis	352	24.67	Rhizoma Chuan- xiong	24	22.43	Rhizoma Alismatis	12	25.53
19	Fructus Lycii	344	24.11	Fructus Rubi	21	19.63	Rhizoma Zingiberis	12	25.53
20	Radix Astragali	306	21.44	Caulis Spatholobi	21	19.63	Rhizoma Cyperi	11	23.40

Association rules

The PCOS database was configured with a threshold of $\geq 10\%$ support and $\geq 65\%$ confidence. The top 3 drug pairs exhibiting the highest confidence were *Fructus* Rubi \rightarrow Semen Cuscutae, Rhizoma Chuanxiong \rightarrow Radix Angelicae Sinensis, and Fructus *Lycii* \rightarrow *Semen Cuscutae*. Notably, among the top 20 association rules, *Radix Angelicae Sinensis* featured prominently in 11 cases, indicating its widespread use in PCOS treatment, consistent with its high frequency of use. In the PCOS-IR database, the criteria were set at $\geq 10\%$ support and $\geq 75\%$ confidence. The top 3

drug pairs with the highest confidence were *Rhizoma Chuanxiong* \rightarrow *Radix Angelicae Sinensis*, *Rhizoma Alismatis* \rightarrow *Poria*, and *Herba Cistanche* \rightarrow *Semen Cuscutae*. Among the top 20 association rules, *Radix Bupleuri* was notably prevalent, indicating its frequent inclusion in drug combinations and indicating its key role in PCOS-IR treatment. Finally, in the IR database, the criteria were set at $\geq 20\%$ support and $\geq 80\%$ confidence. The top 3 drug pairs exhibiting the highest confidence were Radix *Bupleuri* \rightarrow Poria, Radix $Puerariae \rightarrow Radix$ *Glycyrrhizae*, and Rhizoma Atractylodis $Macrocephalae \rightarrow Poria.$ Among the top 20 association rules, Poria emerged as the most frequently encountered drug in various combinations, underscoring its prominence in IR treatment (Table No. 3).

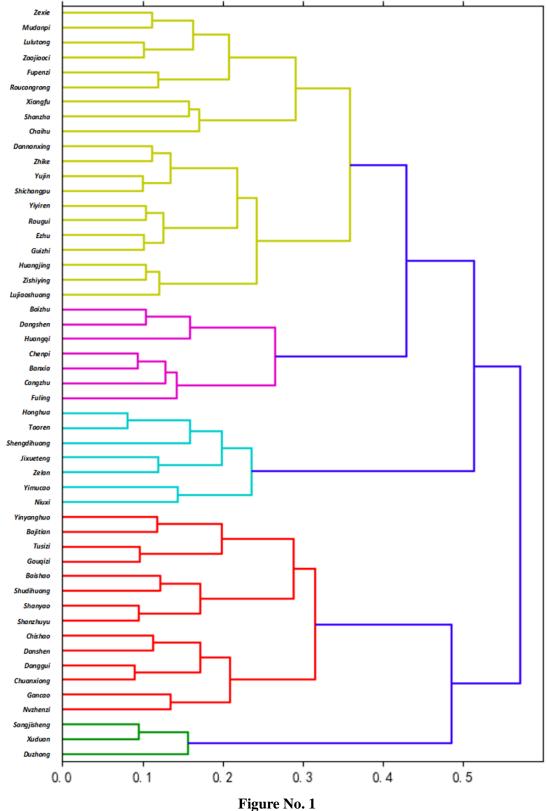
		Se	t of assoc	iation rules within th	e drug s	set			
	PCOS Database PCOS-IR Database IR Database								
Sequence	Rule set	Sup- port (%)	Confi- dence (%)	Rule set	Sup- port (%)	Confi- dence (%)	Rule set	Sup- port (%)	Confidence (%)
1	Fructus Rubi→Semen Cuscutae	12.81	86.89	Rhizoma Chuanxiong→ Radix Angelicae Sinensis	25.00	100	Radix Bupleuri→ Poria	41.86	100
2	Rhizoma Chuanxiong→Radix Angelicae Sinensis	30.99	84.41	Rhizoma Alismatis→Poria	15.62	100	Radix Puerariae→ Radix Glycyrrhizae	30.23	100
3	Fructus Lycii→Semen Cuscutae	19.90	81.29	Herba Cistanche→Semen Cuscutae	12.50	92.31	Rhizoma Atractylodis Macrocephalae →Poria	30.23	100
4	Flos Carthami→Radix Angelicae Sinensis	12.31	80.37	Radix Bupleuri→ Pericarpium Citri Reticulatae	11.46	91.67	Radix Puerariae→ Poria	30.23	100
5	Pericarpium Citri Reticulatae→Poria	21.90	74.63	Radix Bupleuri→Poria	11.46	91.67	Radix Puerariae→ Radix Bupleuri	27.91	92.31
6	Radix Achyranthis Bidentatae→Radix Angelicae Sinensis	22.48	73.02	Radix Paeoniae Rubra→Poria	11.46	91.67	Radix Scutellariae→ Rhizoma Coptidis	27.91	92.31
7	Radix Rehmanniae Preparata→Radix Angelicae Sinensis	25.05	72.02	Semen Cuscutae→Semen Cuscutae	19.79	90.48	Radix Rehmanniae→ Rhizoma Atractylodis	27.91	92.31
8	Rhizoma Atractylodis→Poria	17.97	71.31	Rhizoma Pinelliae→ Pericarpium Citri Reticulatae	20.83	83.33	Pericarpium Citri Reticulatae→ Radix Angelicae Sinensis	25.58	91.67

 Table No.3

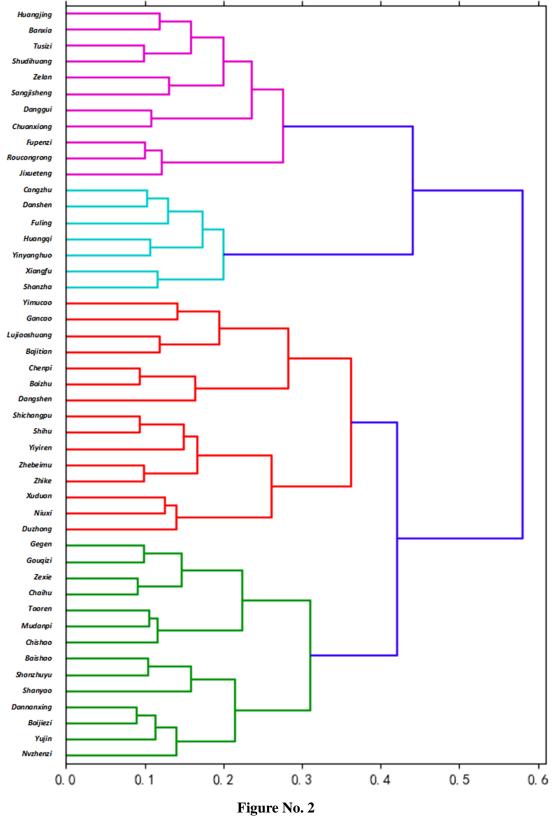
 Set of association rules within the drug set

9	Herba Leonuri→Radix Angelicae Sinensis	17.32	70.76	Radix Rehmanniae Preparata→Radix Angelicae Sinensis	20.83	83.33	Radix Salviae Miltiorrhizae \rightarrow Cortex Moutan	23.26	90.91
10	Fructus Lycii→Radix Angelicae Sinensis	17.25	70.47	Radix Bupleuri→Rhizoma Alismatis	10.42	83.33	Radix Codonopsis→ Poria	44.19	90.48
11	Rhizoma Pinelliae→Poria	15.03	69.31	Radix Bupleuri→Radix Glycyrrhizae	10.42	83.33	Radix Rehmanniae→ Rhizoma Coptidis	25.58	84.62
12	Radix Bupleuri→Radix Angelicae Sinensis	12.67	68.87	Radix Bupleuri→Radix Angelicae Sinensis	10.42	83.33	Herba Epimedii→ Radix Glycyrrhizae	25.58	84.62
13	Rhizoma Cyperi→Radix Angelicae Sinensis	30.28	68.67	Herba Taxilli→Semen Cuscutae	20.83	80.00	Radix Puerariae→ Radix Codonopsis	25.58	84.62
14	Radix Codonopsis→Rhizoma Atractylodis Macrocephalae	13.24	67.77	Rhizoma Alismatis→Radix Angelicae Sinensis	12.50	80.00	Radix Glycyrrhizae→ Radix Codonopsis	37.21	84.21
15	Herba Lycopi→Radix Angelicae Sinensis	13.31	67.64	Fructus Crataegi→Rhizoma Atractylodis	15.62	78.95	Radix Glycyrrhizae→ Poria	37.21	84.21
16	Radix Paeoniae Rubra→Radix Angelicae Sinensis	14.39	67.22	Pericarpium Citri Reticulatae→Poria	26.04	78.12	Radix Bupleuri→ Radix Glycyrrhizae	34.88	83.33
17	Radix Morindae Officinalis→Semen Cuscutae	12.17	66.93	Rhizoma Atractylodis Macrocephalae→ Poria	32.29	77.5	Pericarpium Citri Reticulatae→ Poria	23.26	83.33
18	Radix Dipsaci→Semen Cuscutae	18.68	66.92	Herba Cistanche→ Fructus Rubi	10.42	76.92	Rhizoma Alismatis→ Poria	23.26	83.33
19	Herba Epimedii→Semen Cuscutae	20.69	66.28	Rhizoma Cyperi→ Rhizoma Cyperi	10.42	76.92	Radix Paeoniae Alba→ Semen Cuscutae	20.93	81.82
20	Radix Paeoniae Alba→Radix Angelicae Sinensis	22.26	65.34	Rhizoma Atractylodis→Poria	30.21	76.32	Radix Tricho- santhis→ Radix Rehmanniae	20.93	81.82

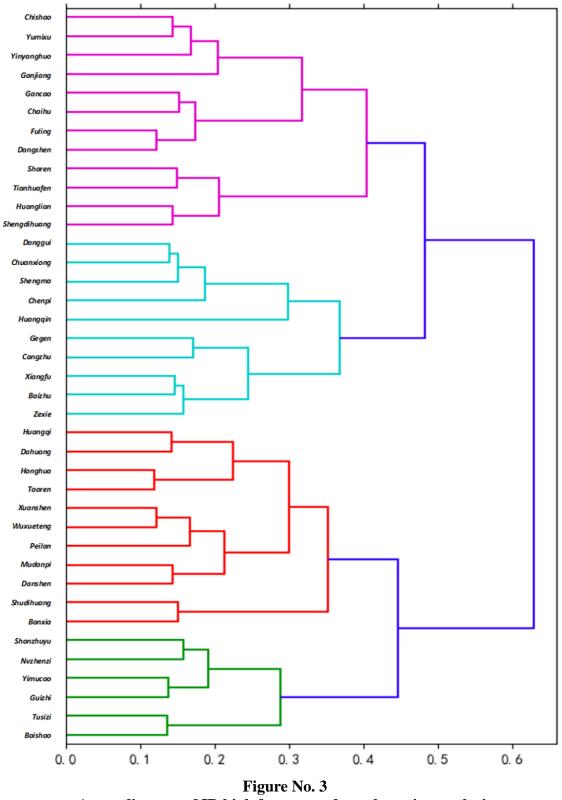
Cluster analysis PCOS database


A systematic clustering methodology was used to analyze the 51 HF drugs for PCOS (frequency > 100), the 47 HF drugs for PCOS-IR (frequency > 7), and the 39 HF drugs for IR (frequency > 4). Clusters were derived from the clustering outcomes to ascertain their directions, and a cluster analysis dendrogram was generated (Figure No. 1; Figure No. 2 and Figure No. 3). Also, the respective types of evidence for each prescription cluster were summarized based on clinical experience (Table No. 4, Table No. 5, Table No. 6).

DISCUSSION


Traditional Chinese Medicine (TCM) does not have a specific term for "PCOS"; however, based on clinical symptoms, PCOS can be categorized under conditions such as "amenorrhea," "infertility," "late menstruation," and "scant menstruation." As early as the records in "Danxi's Heart Method," the description of "phlegm mixed with blood stasis, reversing into a nest-like mass" known as "ke nang" is speculated to be the earliest description of PCOS in TCM. Modern TCM considers that there is a dysfunction of the kidney, liver, and spleen, followed by the obstruction of the penetrating and conception vessels and the uterus by tangible evils such as phlegm dampness and blood stasis. These two factors interact as causes and effects on the body, leading to the development of PCOS, with PCOS-IR being more closely related to kidney deficiency, phlegm dampness, and blood stasis (Munir et al., 2004).

The frequency analysis of medicinal drugs shows that among the top 20 high-frequency drugs commonly used are the following 10: Angelica sinensis (Dang Gui), Cuscuta seed (Tu Si Zi), Poria (Fu Ling), Cyperi Rhizoma (Xiang Fu), Atractylodes macrocephala (Bai Zhu), Glycyrrhiza uralensis (Gan Cao), Epimedium (Yin Yang Huo), Citrus peel (Chen Pi), Atractylodes lancea (Cang Zhu), and Astragalus membranaceus (Huang Qi). The high consistency in the use of these drugs reflects the close correlation of their underlying pathological mechanisms. Angelica sinensis nourishes and activates blood circulation, Cuscuta seed and Epimedium tonify the kidney and assist yang, Poria and Atractylodes macrocephala strengthen the spleen and drain dampness, Citrus peel and Atractylodes lancea strengthen the spleen, dry dampness, and transform phlegm, Cyperi Rhizoma regulates qi, relieves depression, and regulates menstruation. Astragalus membranaceus supplements qi and assists in transforming phlegm and dampness, and Glycyrrhiza uralensis supplements the spleen and harmonizes other medicinals. Together, they achieve the effects of tonifying the kidney and spleen, resolving dampness and phlegm, and activating blood circulation. Based on the prescription, it is inferred that "kidney and spleen deficiency with interplay of phlegm and blood stasis" is a common syndrome among the three. "The kidney is the root of phlegm production, and the spleen is the source of phlegm," as stated in "Jingyue Quanshu Phlegm Drink," "Although all five organs can produce phlegm, none can do so without involving the spleen and kidney." This indicates that "phlegm dampness" is a common pathological product and the core pathogenic factor for PCOS, PCOS-IR, and IR, which highly coincides with the Western medical understanding that "IRdisorders centered metabolic are the core pathophysiological basis for the occurrence and development of PCOS" (Anonimous, 2024).


The association rule analysis results show that the basic medicinal pairs for treating PCOS include *Rubus chingii* \rightarrow *Cuscuta* seed, *Lycium barbarum* \rightarrow *Cuscuta* seed, *Ligusticum chuanxiong* \rightarrow *Angelica sinensis*, *Carthamus tinctorius* \rightarrow *Angelica sinensis*, and *Rehmannia glutinosa* \rightarrow *Angelica sinensis*. These pairs are believed to have the effects of nourishing the kidney and essence, aiding yang, and activating blood circulation and qi. Based on the knowledge of classical prescriptions, it is inferred that these combinations may be modifications of the Five-Seed Yi Zhong Wan and Tao Hong Si Wu Tang formulas.

Tree diagram of PCOS high frequency drug clustering analysis

A tree diagram of the PCOS-IR HF drug clustering analysis

A tree diagram of IR high frequency drug clustering analysis

Xu et al.

PCOS high-frequency drug system clustering (frequency amplitude > 100)					
Classification	Cluster	Efficacy	Applicable evidence		
1st	Herba Taxilli, Radix Dipsaci, Herba Taxilli	Reinforce the liver and kidneys. Warm and tonify the kidney yang.	Kidney yang defciency		
2nd	Fructus Ligustri Lucidi, Fructus Corni, Rhizoma Dioscoreae, Radix Rehmanniae Preparata, Fructus Lycii, Semen Cuscutae, Radix Morindae Officinalis, Herba Epimedii, Radix Paeoniae Alba Rhizoma Chuanxiong, Radix Angelicae Sinensis, Radix Salviae Miltiorrhizae, Radix Paeoniae Rubra, Radix Glycyrrhizae	Nourish yin and strengthen kidneys. Tonify and circulate blood.	Kidney defciency and blood stasis		
3rd	Semen Persicae, Flos Carthami, Radix Achyranthis Bidentatae, Herba Leonuri, Herba Lycopi, Caulis Spatholobi, Radix Rehmanniae	Circulate blood and overcome stasis. nourish blood and regulate menstruation	Blood stasis and amenorrhoea		
4th	Poria, Radix Codonopsis, Rhizoma Atractylodis Macrocephalae, Rhizoma Atractylodis, Rhizoma Pinelliae, Pericarpium Citri Reticulatae, Radix Scutellariae	Strengthen the spleen and tonify the qi. Dry the dampness and transform phlegm.	Spleen deficiency with phlegm dampness		
5th	Cornu Cervi Degelatinatum, Fluoritum, Rhizoma Polygonati, Ramulus Cinnamomi, Curcuma Zedoary, Cortex Cinnamomi, Semen Coicis, Rhizoma Acori Graminei, Radix Curcumae, Fructus Aurantii Arisaema Cum Bile, Radix Bupleuri, Fructus Crataegi, Rhizoma Cyperi, Herba Cistanche, Fructus Rubi, Chinese Honeylocust Spine, Beautiful Sweetgum Fruit, Cortex Moutan, Rhizoma Alismatis	Warm Yang and transform phlegm. Transform stasis and unlock collaterals.	Kidney deficiency and phlegm stasis		

Table No. 4COS high-frequency drug system clustering (frequency amplitude > 100)

The basic medicinal pairs for treating PCOS-IR include *Ligusticum chuanxiong* \rightarrow *Angelica sinensis*, *Cistanche deserticola* \rightarrow *Cuscuta* seed, *Alisma plantago-aquatica* \rightarrow *Poria*, *Atractylodes macrocephala* \rightarrow *Poria*, and *Atractylodes lancea* \rightarrow *Poria*. These pairs are believed to have the effects of nourishing the kidney and yang, activating blood circulation, strengthening the spleen, and resolving dampness and phlegm. Based on the knowledge of classical prescriptions, it is inferred that these combinations may be modifications of the Cistanche Tu Si Zi Wan and Fu Ling Bai Zhu Tang formulas. The basic medicinal pairs for treating IR include Bupleurum chinense \rightarrow Poria, Atractylodes macrocephala \rightarrow Poria, Pueraria lobata \rightarrow Glycyrrhiza uralensis, Pueraria lobata \rightarrow Poria, and Codonopsis pilosula \rightarrow Poria. These pairs are believed to have the effects of strengthening the spleen, benefiting qi, resolving dampness, clearing heat, and quenching thirst. Based on the knowledge of classical prescriptions, it is inferred that these combinations may be modifications of the Si Jun Zi Tang and Chaihu Ge Gen Tang formulas. Among them, "Citrus reticulata \rightarrow Poria" is a highly

associated rule common to all three, indicating that this pair is the most frequently used in the treatment of the three diseases. Citrus reticulata, belonging to the qi-regulating herbs, has a sweet and spicy taste and a warm nature, which can regulate qi, strengthen the spleen, and dry dampness and transform phlegm. Poria, belonging to the diuretic and swelling-reducing herbs, has a sweet and light taste and a neutral nature, which can promote diuresis, resolve dampness, strengthen the spleen, and calm the mind. The combination of Citrus reticulata and Poria can regulate the flow of qi, strengthen the spleen, and promote the metabolism of water and fat. Studies have shown that the main active component of Citrus reticulata, nobiletin (NOB), has protective effects against metabolic and reproductive disturbances in letrozole-induced polycystic ovary syndrome in rats (Ijaz et al., 2023). The main active component of Poria cocos, Pachymic acid, may improve insulin resistance and suppress inflammatory responses in PCOS rats by inhibiting the HMGB1/RAGE signaling pathway (Tang et al., 2024). Poria cocos oligosaccharides (PCO), may be used as a novel prebiotic in the treatment of glucolipid disorders by reshaping the intestinal bacteria structure (Zhu et al., 2022). By inferring the syndrome from the medicine, it further confirms that "phlegm-dampness" is a common pathological product and the core pathogenic factor for all three, which is completely consistent with the conclusions suggested by the high-frequency drug distribution list.

PCOS-IR clustering of high-frequency drug systems (frequency amplitude > 7)						
Cluster class	Cluster value	Efficacy	Applicable evidence			
1st	Fructus Ligustri Lucidi, Radix Curcumae, Semen brassicae, Arisaema Cum Bile, Rhizoma Dioscoreae, Fructus Corni, Radix Paeoniae Alba, Radix Paeoniae Rubra, Cortex Moutan, Semen Persicae, Radix Bupleuri, Rhizoma Alismatis, Fructus Lycii, Radix Puerariae	Reinforce the liver and kidneys Circulate blood and transform phlegm	Liver and kidney yin deficiency Comprehensive phlegm stasis			
2nd	Eucommia Bark, Radix Achyranthis Bidentatae, Radix Dipsaci, Fructus Aurantii, Bulbus Fritillariae Thunbergii, Semen Coicis, Herba Dendrobii, Rhizoma Acori Graminei, Radix Codonopsis Rhizoma Atractylodis Macrocephalae, Pericarpium Citri Reticulatae, Radix Morindae Officinalis, Cornu Cervi Degelatinatum, Radix Glycyrrhizae, Herba Leonuri	Warm the kidney and strengthen the spleen Transform the phlegm and reduce stasis	Kidney and yang deficiency Damp phlegm with stasis			
3rd	Poria, Rhizoma Atractylodis, Fructus Crataegi, Rhizoma Cyperi, Herba Epimedii, Radix Astragali, Radix Salviae Miltiorrhizae	Strengthen the spleen and toifye the qi. Transform phlegm and improve blood circulation.	Spleen deficiency Damp phlegm with stasis			
4th	Caulis Spatholobi, Herba Cistanche, Fructus Rubi, Rhizoma Chuanxiong, Radix Angelicae Sinensis, Herba Taxilli, Herba Lycopi, Radix Rehmanniae Preparata Semen Cuscutae, Rhizoma Pinelliae, Rhizoma Polygonati	Tonic for the kidneys and supports the yang Circulate blood and overcome stasis.	Kidney yang deficiency Blood stasis			

 Table No. 5

 PCOS-IR clustering of high-frequency drug systems (frequency amplitude > 7)

Cluster class	Cluster value	Efficacy	Applicable evidence
1 st	Radix Rehmanniae, Rhizoma Coptidis, Radix Trichosanthis, Fructus Amomi, Radix Codonopsis, Poria, Radix Bupleuri, Radix Glycyrrhizae Rhizoma Zingiberis, Herba Epimedii, Corn Stigma, Radix Paeoniae Rubra	Warm the middle jiao and strengthen the spleen Clear heat and transform dampness in three jiao	Yin deficiency of the spleen and stomach Interior retention of damp-heat
2^{nd}	Rhizoma Alismatis, Rhizoma Atractylodis Macrocephalae, Rhizoma Cyperi, Rhizoma Atractylodis, Radix Puerariae, Radix Scutellariae, Pericarpium Citri Reticulatae, Rhizoma Cimicifugae, Rhizoma Chuanxiong, Radix Angelicae Sinensis	Tonify the spleen, increase yang, and transform dry dampness into phlegm.	Spleen deficiency Phlegm and damp stasis
3 rd	Rhizoma Pinelliae, Radix Rehmanniae Preparata, Radix Salviae Miltiorrhizae, Cortex Moutan, Fortune Eupatorium Herb, Gymnema sylvestre, Figwort Root, Semen Persicae, Flos Carthami, Radix et Rhizoma Rhei, Radix Astragali	Circulate blood and overcome stasis. Remove turbidity and detoxify poison.	Blood stasis Muddled and poisonous substance within
4 th	Radix Paeoniae Alba, Semen Cuscutae, Ramulus Cinnamomi, Herba Leonuri, Fructus Ligustri Lucidi, Fructus Corni	Reinforce the liver and kidneys. Warm the passages to reduce blood stasis and remove it.	Liver and kidney yin deficiency Blood stasis obstructs the veins

Table No. 6
IR high-frequency drug system clustering (frequency amplitude > 4)

The results of the systematic cluster analysis show that: -- all three primarily employ interventions with traditional Chinese medicine formulas, with the core formulas being small composite formulas, and the use of large composite formulas is relatively less frequent. The common core formulas for all three include Poria cocos, Cyperi Rhizoma, Atractylodes macrocephala. Glycyrrhiza uralensis. Citrus reticulata. Atractylodes lancea. Ligusticum chuanxiong, Angelica sinensis, Cuscuta seed. and Epimedium. This formula uses Atractylodes lancea and Citrus reticulata to strengthen the spleen, dry dampness, and transform phlegm, Cyperi Rhizoma to soothe the liver and regulate qi, Poria cocos, macrocephala, Atractylodes and Glycyrrhiza uralensis to tonify the spleen and boost energy, Angelica sinensis and Ligusticum chuanxiong to nourish blood and activate blood circulation, and Cuscuta seed and Epimedium to tonify the kidney and assist yang. The combination of these herbs works together to strengthen the spleen and kidney, dry dampness and transform phlegm, activate blood circulation and regulate menstruation, is mainly used for spleen and kidney deficiency, and phlegmdampness with blood stasis syndrome. Based on the knowledge of classical prescriptions, it is inferred that this formula may be a modified version of Cangfu Daotan Wan and its similar formulas, as stated in "Zhu Lin Nu Ke Zheng Zhi, Volume One": "For those with abundant physique and much phlegm and gi deficiency, whose menstruation only comes every few months, Cangfu Liujun Tang is appropriate, along with Cangfu Daotan Wan." In fact, "Cangfu Daotan Tang" is recommended as the most commonly used prescription for PCOS in the latest Chinese guidelines for the integrated treatment of polycystic ovary syndrome (Chinese Society of Integrated Traditional Chinese and Western Medicine, Obstetrics and Gynecology Committee, 2024). Studies have shown that Cangfu Daotan Tang (CFDT) can alleviate mitochondria-dependent granulosa cell apoptosis in a rat model of polycystic ovary syndrome (PCOS) by inhibiting the ASK1/JNK pathway, thereby improving ovarian function (Jiang

et al., 2022). Another study has shown that Modified Cangfu Daotan Decoction ameliorates polycystic ovary syndrome with insulin resistance via nf-kb/lcnsignaling pathway 2 in inflammatory microenvironment (Liu et al., 2022). Further clinical research by our team has confirmed that the modified version of Cangfu Daotan can improve insulin resistance levels and BMI in PCOS-IR infertile patients, increase blood perfusion in the endometrium during the implantation phase, significantly increase clinical pregnancy rates, and improve pregnancy outcomes (Xu et al., 2024). In addition, it is worth noting that kidney yang deficiency and blood stasis are also common syndromes in all three, hence warming kidney yang formulas such as Wu Zi Yan Zong Wan, You Gui Wan, and Er Xian Tang, as well as blood-activating and stasis-removing formulas such as Tao Hong Si Wu Tang and Xue Fu Zhu Yu Tang, become another focus of the compound formula.

CONCLUSION

In summary, kidney and spleen deficiency, along with the presence of phlegm and stasis, represent common core symptoms across PCOS, PCOS-IR, and IR. Treatment strategies primarily focus on tonifying the kidney and spleen, resolving dampness and phlegm, promoting blood circulation, and enhancing blood stasis. Semen Cuscutae, Poria, Rhizoma Cyperi, Atractylodis *Macrocephalae*, Rhizoma Radix Glycyrrhizae, Herba Epimedii, Pericarpium Citri Reticulatae. Rhizoma Atractylodis, Rhizoma Chuanxiong, and Radix Angelicae Sinensis emerge as commonly used high-frequency medicines. The addition and subtraction formula of Cangfu Daotan Wan serves as a common core prescription for these conditions. Notably, "phlegm-dampness" emerges as the common core pathological product and pathogenic factor across PCOS, PCOS-IR, and IR, which corresponds with the concept of insulin resistance in Western medicine. This underscores the key role of "phlegm-dampness" in the development of PCOS and highlights the significance of addressing this factor in disease management.

Effective management of "phlegmdampness" can significantly prevent the progression of PCOS, leveraging the therapeutic potential of traditional Chinese medicine in disease prevention and management. Leveraging medical cases of PCOS, PCOS-IR, and IR, this study uses data mining methods to assess medication usage patterns for these conditions. Such research holds crucial implications for enhancing diagnosis and treatment approaches by Chinese medicine practitioners. optimizing medication strategies, establishing comprehensive management systems to leverage the benefits of traditional Chinese medicine for PCOS, and ultimately reducing the long-term risk of metabolic complications such as diabetes mellitus and other conditions.

Competing interests

The authors declare that they have no conflict of interest regarding this work.

Funding

This research was supported by National Natural Science Foundation of China (No.82305297); This research was supported by National Natural Science Foundation of China (No.82405457); Suzhou Science Technology Development and Plan Project (No.SKY2021057); Suzhou Gusu Health Talent Plan Scientific Research Project (No.GSWS2022082); Natural Science Fund Project of Nanjing University of Chinese Medicine (No.XZR2020037) and Horizontal topic of Nanjing University of TCM (No.2019061; No.2019036; No.2019010; No.2019004).

Data Availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

REFERENCES

- Ali AT, Guidozzi F. 2020. Midlife women's health consequences associated with polycystic ovary syndrome. Climacteric 23: 116 122. https://doi.org/10.1080/13697137.2019.1679111
- Brothers KJ, Wu S, DiVall SA, Messmer MR, Kahn CR, Miller RS, Radovick S, Wondisford FE, Wolfe A. 2010. Rescue of obesity-induced infertility in female mice due to a pituitary-specific knockout of the insulin receptor. **Cell Metab** 12: 295 - 305. https://doi.org/10.1016/j.cmet.2010.06.010
- Chinese Society of Integrated Traditional Chinese and Western Medicine, Obstetrics and Gynecology Committee. 2024. Guidelines for the diagnosis and treatment of polycystic ovary syndrome with integrated traditional Chinese and Western medicine. Chin J Integ Tradit Western Med 44: 5 18.
- Deng Y, Xue W, Wang YF, Liu XH, Zhu SY, Ma X, Zuo HL, Jiang JF, Zheng TP, Sun AJ. 2019. Insulin resistance in

polycystic ovary syndrome improved by Chinese Medicine Dingkun Pill: A randomized controlled clinical trial. **Chin J Integr Med** 25: 246 - 251. https://doi.org/10.1007/s11655-018-2947-1

- Diamanti-Kandarakis E, Dunaif A. 2012. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocrinol Rev 33: 981 1030. https://doi.org/10.1210/er.2011-1034
- Ding CF, Wang CY, Yang X, Zheng RH, Yan ZZ, Chen WQ. 2014. [Effect of modified cangfu daotan decoction in enhancing endometrial receptivity in infertility patients with polycystic ovarian syndrome]. Chin J Integ Trad Western Med 34: 1297 1301. (In Chinese).
- Dumesic DA, Abbott DH, Padmanabhan V. 2007. Polycystic ovary syndrome and its developmental origins. **Rev** Endocrinol Metab Disord 8: 127 - 141. https://doi.org/10.1007/s11154-007-9046-0
- Gao X. 2007. Zhongyaoxue (Chinese Materia Medica) China Press of Traditional Chinese Medicine, Beijingm, China.
- Given JE, Loane M, Garne E, Addor MC, Bakker M, Bertaut-Nativel B, Gatt M, Klungsoyr K, Lelong N, Morgan M, Neville AJ, Pierini A, Rissmann A, Dolk H. 2018. Metformin exposure in first trimester of pregnancy and risk of all or specific congenital anomalies: exploratory case-control study. BMJ 361: k2477. https://doi.org/10.1136/bmj.k2477
- Guo L, Guo X, Li Y, Hong X, Jiang X, Su Q, Zhao D, Wu X, Ji L. 2016. Effects of body mass index or dosage on gastrointestinal disorders associated with extended-release metformin in type 2 diabetes: Sub-analysis of a Phase IV open-label trial in Chinese patients. **Diabetes Metab Syndrome** 10: 137 142. https://doi.org/10.1016/j.dsx.2016.01.004
- Hanem LGE, Stridsklev S, Júlíusson PB, Salvesen Ø, Roelants M, Carlsen SM, Ødegård R, Vanky E. 2018. Metformin use in PCOS pregnancies increases the risk of offspring overweight at 4 years of age: Follow-up of two RCTs. J Clin Endocrinol Metab 103: 1612 - 1621. https://doi.org/10.1210/jc.2017-02419
- (Muhammad) Ijaz MU, Sultan MM, Batool M, Ashraf A, Almutairi MH, Ishtiaq A. 2023. Protective effects of nobiletin against metabolic and reproductive disturbance in letrozole induced polycystic ovarian syndrome in rats. J King Saud Univ Sci 36: 103045. https://doi.org/10.1016/j.jksus.2023.103045
- Jiang XL, Tai H, Xiao XS, Zhang SY, Cui SC, Qi SB, Hu DD, Zhang LN, Kuang JS, Meng XS, Li SM. 2022. Cangfudaotan decoction inhibits mitochondria-dependent apoptosis of granulosa cells in rats with polycystic ovarian syndrome. Front Endocrinol 13: 962154. https://doi.org/10.3389/fendo.2022.962154
- Lim SS, Hutchison SK, Van Ryswyk E, Norman RJ, Teede HJ, Moran LJ. 2019. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev 3: CD007506. https://doi.org/10.1002/14651858.CD007506.pub4
- Liu H, Chen C, Li F, Zhang L, Zhang J. 2020. Long-term effects of intrauterine exposure to metformin on offspring. Chin J Perinatal Med 2: 126 130.
- Liu S, Zhang Y, Yang F, Gu J, Zhang R, Kuang Y, Mai W, Zheng C, Yu Y, Lu R, Zeng L, Cao H, Long Y. 2022. Modified Cangfu Daotan decoction ameliorates polycystic ovary syndrome with insulin resistance via NFkB/LCN-2 signaling pathway in inflammatory microenvironment. Front Endocrinol 13: 975724. https://doi.org/10.3389/fendo.2022.975724
- Munir I, Yen HW, Geller DH, Torbati D, Bierden RM, Weitsman SR, Agarwal SK, Magoffin DA. 2004. Insulin augmentation of 17alpha-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signal-regulated kinase-1/2 in human ovarian theca cells. **Endocrinology** 145: 175 183. https://doi.org/10.1210/en.2003-0329
- Nestler JE, Jakubowicz DJ, de Vargas AF, Brik C, Quintero N, Medina F. 1998. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab 83: 2001 - 2005. https://doi.org/10.1210/jcem.83.6.4886
- Polycystic Ovary Syndrome Combined with Insulin Resistance Diagnosis and Treatment Expert Consensus. Reprod Med J 33: 1133 1140.
- Qi J, Sun Y, Chen Z. 2018. Molecular mechanism and biological effects of endometrial insulin resistance in polycystic ovary syndrome. Chin J Reprod Contracept 38: 513 516.
- Standards of Medical Care in Diabetes-2018. Diabetes Care 41: S1 S2. https://doi.org/10.2337/dc18-Sint01
- Su KL, Ye J, Zhang YQ, Cao P, You H, Lu M, Zhu MW, Zhu Y. 2019. Deconstructive association analysis of medicinal paste cases of famous TCM experts of Jiangsu, Zhejiang and Shanghai on the basis of data mining. **China J Tradit Chin Med Pharm** 34: 2721 2727.

- Tang H, Li LX, Hua Y, Jiang XM, Zhang SW, Fu JR. 2024. The effect and mechanism of *Poria cocos* on improving insulin resistance in polycystic ovary syndrome rats. **China Pharm** 35: 57 62..
- Wang C, Liang X. 2019. Role of insulin resistance in polycystic ovarian syndrome and intervention with Chinese Medicine. Chin J Integ Trad Western Med 39: 894 - 896.
- Xu M, Zhou Q. 2020. Clinical study on effect of Jinshui Xiangsheng recipe combined with metformin sustainedrelease tablets on sex hormone level and insulin resistance in PCOS patients. Liaoning J Tradit Chin Med 47: 84 - 86.
- Xu D, Zhou HF Liu Y, Xu J, Xu M, Bao FH, Jiang GR, Song QX. 2024. Clinical study on the treatment of polycystic ovary syndrome with insulin resistance and infertility using a kidney-tonifying, phlegm-transforming, and blood-activating formula. **Tianjin J Tradit Chin Med** 41: 157 163.
- Yang T, Lu M, Zhu Y. 2016. The design and implementation of TCM correlation analysis platform based on FP growth algorithm. Lishizhen Med Materia Med Res 12: 3050 3052.
- Zhao H, Zhang J, Cheng X, Nie X, He B. 2023. Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. J Ovarian Res 16: 9. https://doi.org/10.1186/s13048-022-01091-0
- Zhonghua Renmin Gongheguo Yaodian 2015. (**The Pharmacopoeia of the People's Republic of China**). National Pharmacopoeia Commission of China, Beijing, China.
- Zhongyi Linchuang Shuju Wajue Yanjiu Shuju Guifanhua Biaozhun. 2019. (The Data Standardized Terminology of Data Mining and Research for TCM Clinical Medical Cases). Standard Record of Enterprise of Jiangsu Region, Nanjing, China.
- Zhu L, Ye C, Hu B, Xia H, Bian Q, Liu Y, Kong M, Zhou S, Liu H. 2022. Regulation of gut microbiota and intestinal metabolites by Poria cocos oligosaccharides improves glycolipid metabolism disturbance in highfat diet-fed mice. J Nutr Biochem 107: 109019. https://doi.org/10.1016/j.jnutbio.2022.109019

SUPPLEMENTARY MATERIAL



Figure No. S1 Flow chart of literature retrieval

	List of compounds studied				
No.	Pinyin Name	Pinyin Name			
1	Danggui	Angelicae Sinensis Radix			
2	Tusizi	Semen Cuscutae			
3	Fuling	Poria			
4	Xiangfu	Nutgrass Galingale Rhizome			
5	Baizhu	Atractylodis Macrocephalae Rhizoma			
6	Cangzhu	Atractylodis Rhizoma			
7	Danshen	Salviae Miltiorrhizae Radix et Rhizoma			
8	Fupenzi	Rubi Fructus			
9	Gouqizi	Lycii Fructus			
10	Chuanxiong	Chuanxiong Rhizoma			
11	Honghua	Carthami Flos			
12	Shudihuang	Rehmanniae Radix			
13	Shengdihuang	Rehmanniae Radix			
14	Roucongrong	Cistanches Herba			
15	Zexie	Alismatis Rhizoma			
16	Dangshen	Codonopsis Radix			
17	Gancao	Glycyrrhizae Radix et Rhizoma			
18	Chaihu	Bupleuri Radix			
19	Huanglian	Coptidis Rhizoma			
20	Gegen	Puerariae Lobatae Radix			
21	Chenpi	Citri Reticulatae Pericarpium			
22	Banxia	Pinelliae Rhizoma			
23	Yinyanghuo	Epimedii Folium			
24	Niuxi	Achyranthis Bidentatae Radix			
25	Duzhong	Eucommiae Cortex			
26	Xuduan	Dipsaci Radix			
27	Sangjisheng	Taxilli Herba			
28	Nvzhenzi	Ligustri Lucidi Fructus			
29	Chishao	Paeoniae Radix Rubra			
30	Shanzhuyu	Corni Fructus			
31	Shanyao	Dioscoreae Rhizoma			
32	Baishao	Paeoniae Radix Alba			
33	Bajitian	Morindae Officinalis Radix			
34	Yimucao	Leonuri Herba			
35	Zelan	Eupatorium			
36	Jixueteng	Spatholobi Caulis			
37	Taoren	Persicae Semen			
38	Huangqi	Astragali Radix			
39	Huangqin	Scutellariae Radix			
40	Lujiaoshuang	Cervi Cornu Degelatinatum			
41	Zishiying	Flourite Fluoritum			
42	Huangjing	Polygonati Rhizoma			
43	Guizhi	Cinnamomi Ramulus			
44	Ezhu	Curcumae Rhizoma			
45	Rougui	Cinnamomi Cassiae Cortex			
46	Yiyiren	Coicis Semen			
47	Shichangpu	Acori Tatarinowii Rhizoma			

Table No. S1 List of compounds studied

48	Yujin	Curcumae Radix
49	Zhike	Aurantii Fructus
50	Dannanxing	Arisaematis Cum Bile
51	Shanzha	Crataegi Fructus
52	Zaojiaoci	Gleditsia sinensis Lam
53	Lulutong	Fructus Liquidambaris
54	Mudanpi	Moutan Cortex
55	Baijiezi	Semen sinapis
56	Zhebeimu	Fritillariae Thunbergii Bulbus
57	Shihu	Dendrobii Caulis
58	Peilan	Eupatorium fortunei
59	Wuxueteng	Gymnema sylvestre
60	Xuanshen	Scrophulariae Radix
61	Dahuang	Rhei Radix et Rhizoma
62	Shengma	Cimicifugae Rhizoma
63	Tianhuafen	Trichosanthis Radix
64	Sharen	Amomi Fructus
65	Ganjiang	Zingiberis Rhizoma
66	Yumixu	Mon Yam Rhizome